Exam

521317S, Wireless Communications III

Exam 13 September 2013. Leave a margin of two columns at the right-hand side of each page. Mark clearly where a solution to a problem ends and if it continues on a following page or paper. Use of pencil in the solutions is allowed.

1. Consider a fast fading K-user uplink channel

$$y[m] = \sum_{k=1}^{K} h_k[m] x_k[m] + w[m]$$
 (1)

where $h_k[m]$ is the normalised channel coefficient of user k at time instant m, $x_k[m]$ is the TX symbol of user k at time instant m, subject to $\mathbb{E}[|x_k|^2] \leq P_k$ and $w[m] \sim \mathcal{CN}(0, N_0)$ is i.i.d. complex Gaussian noise.

- 1.1 Write and depict the ergodic capacity region for 2-user (K=2) fast fading channel assuming full channel state information (CSI) knowledge both at the transmitters and the receiver. Highlight the sum rate optimal boundary point and describe a simple power allocation scheme that can achieve the point. Explain how weighted sum rate maximization can be used to find all points on the boundary of the capacity region.
- 1.2 For K=3 and with CSI at the receiver only, derive the ergodic sum rate capacity via mutual information. Assuming decoding order 3, 2, 1, write the ergodic user specific rate expression R_k , k=1,2,3. Hint: Calculate first the rates conditioned on a single channel realisation, and then take the average over the fading distribution. $I(x_1, x_2, x_3; y) = h(y) h(y|x_1, x_2, x_3) = I(x_1; y) + I(x_2; y|x_1) + I(x_3; y|x_1, x_2)$.
- 2. Assume time-invariant point-to-point MIMO channel with $n_{\rm t}$ transmit antennas and $n_{\rm r}$ receive antennas. The received signal vector at symbol time m is described by

$$\mathbf{y}[m] = \mathbf{H}\mathbf{x}[m] + \mathbf{w}[m] \tag{2}$$

where \mathbf{x} is the transmit symbol vector of user k, subject to $\mathbb{E}[\operatorname{Tr}(\mathbf{x}\mathbf{x}^{\mathrm{H}})] = \operatorname{Tr}(\mathbf{K}_{x}) \leq P$, $\mathbf{y} \in \mathbb{C}^{n_{\mathrm{r}}}$ is the received signal, $\mathbf{w} \sim \mathcal{CN}(0, N_{0}\mathbf{I})$ is complex white Gaussian noise, and $\mathbf{H} \in \mathbb{C}^{n_{\mathrm{r}} \times n_{\mathrm{t}}}$ is the channel matrix

- 2.1 Derive the capacity of the system in (2) assuming Gaussian input distribution. Show that the general (log det) expression is equivalent to the one achieved via singular value decomposition of **H**. Hint: $h(\mathbf{y}) \leq \log \det(\pi e \mathbb{E}[\mathbf{y}\mathbf{y}^{\mathrm{H}}])$.
- 2.2 Assuming CSI knowledge only at the receiver and $\mathbf{K}_x = \frac{P}{n_t} \mathbf{I}_{n_t}$, write the signal-to-interference-plus-noise ratio (SINR) per received data stream for the matched filter (MF), zero forcing (ZF), linear minimum mean square error (MMSE) and MMSE with successive interference cancellation (MMSE-SIC) receiver structures. Simplify the SINR expressions as much as possible. Compare (illustrate) their performance across the entire SNR range.

Exam

3. Consider time-invariant downlink channel with 2 single-antenna users and a single BS with n_t transmit antennas. The received signal vector $y_k \in \mathbb{C}$ for user k at symbol time m is described by

$$y_k[m] = \sum_{i=1}^{2} \mathbf{h}_k^{\mathrm{H}} \mathbf{u}_i x_i[m] + w_k[m]$$
 (3)

where $x_k = \sqrt{p_k} d_k$ is the TX symbol of user k split into the normalised data symbol $d_k \in \mathbb{C}$ ($\mathrm{E}[|d_k|^2] = 1$) and the corresponding power allocation p_k , $\mathbf{u}_k \in \mathbb{C}^{n_t}$ is the normalised beamformer, $\|\mathbf{u}_k\| = 1$, $w_k \sim \mathcal{CN}(0, N_0)$ is the complex white Gaussian noise and $\mathbf{h}_k \in \mathbb{C}^{n_t}$ is the channel vector of user k ideally known at the transmitter.

Assume the BS applies non-linear Costa precoding with user encoding order 1, 2. Find the sum rate optimal precoders $\mathbf{m}_k = \sqrt{p_k}\mathbf{u}_k$, k = 1, 2, where \mathbf{u}_k is the normalised transmit beamformer vector and p_k is the corresponding power allocation. Hint: Start with dual uplink formulation with reverse decoding order, find the sum rate optimal powers and the MMSE-SIC receivers in the dual uplink, and apply the uplink-downlink duality to find the corresponding downlink precoders.