UNIVERSITY OF OULU	521317S	1(2)
Department of Communications Engineering	Exam	

521317S, Wireless Communications III

Exam 10 May 2013. Leave a margin of two columns at the right-hand side of each page. Mark clearly where a solution to a problem ends and if it continues on a following page or paper. Use of pencil in the solutions is allowed.

1. Consider a fast fading K-user uplink channel

$$y[m] = \sum_{k=1}^{K} h_k[m] x_k[m] + w[m]$$
(1)

where $h_k[m]$ is the normalised channel coefficient of user k (each with stationary and ergodic fading process), x_k is the TX symbol of user k, subject to $\mathbb{E}[|x_k|^2] \leq P_k$ and $w[m] \sim \mathcal{CN}(0, N_0)$ is i.i.d. complex Gaussian noise.

- 1.1 Draw a figure illustrating the system model in (1).
- 1.2 For K = 2, express and depict the (ergodic) capacity region for the case with channel state information (CSI) at the receiver only.
- 1.3 For K = 3 and with CSI at the receiver only, derive the ergodic sum rate capacity via mutual information. Assuming decoding order 1, 2, 3, write the ergodic user specific rate expression $R_k, k = 1, 2, 3$. *Hint: Calculate first the rates conditioned on a single channel realisation, and then take the average over the fading distribution.* $I(x_1, x_2, x_3; y) = h(y) - h(y|x_1, x_2, x_3) = I(x_1; y) + I(x_2; y|x_1) + I(x_3; y|x_1, x_2).$
- 1.4 With full CSI and $P_k = P \forall k$, describe the simple sum rate optimal transmission strategy.
- 1.5 With full CSI and $P_k = P \forall k$, explain the effect of multiuser diversity gain on the sum rate capacity as the number of users K is increased.
- 2. Assume time-invariant point-to-point MIMO channel with $n_{\rm t}$ transmit antennas and $n_{\rm r}$ receive antennas. The received signal vector at symbol time m is described by

$$\mathbf{y}[m] = \mathbf{H}\mathbf{x}[m] + \mathbf{w}[m] \tag{2}$$

where \mathbf{x} is the transmit symbol vector of user k, subject to $\mathbb{E}[\operatorname{Tr}(\mathbf{x}\mathbf{x}^{\mathrm{H}})] = \operatorname{Tr}(\mathbf{K}_{x}) \leq P$, $\mathbf{y} \in \mathbb{C}^{n_{\mathrm{r}}}$ is the received signal, $\mathbf{w} \sim \mathcal{CN}(0, \mathbf{Z})$ is complex *coloured* Gaussian noise, and $\mathbf{H} \in \mathbb{C}^{n_{\mathrm{r}} \times n_{\mathrm{t}}}$ is the channel matrix

- 2.1 Derive the mutual information $I(\mathbf{x}; \mathbf{y})$ of the system in (2) in terms of \mathbf{K}_x . What is the capacity achieving distribution of \mathbf{x} that maximises $I(\mathbf{x}; \mathbf{y})$? *Hint:* $h(\mathbf{y}) \leq \log \det(\pi e \mathbb{E}[\mathbf{y}\mathbf{y}^H])$
- 2.2 Assume $\mathbf{K}_x = \mathbf{Q}\mathbf{P}\mathbf{Q}^{\mathrm{H}}$, where \mathbf{Q} is a unitary precoder matrix and \mathbf{P} is a diagonal power allocation matrix. What is the capacity optimal \mathbf{Q} and \mathbf{P} when both \mathbf{H} and \mathbf{Z} are perfectly known at the transmitter *Hint: Consider a whitened channel* $\tilde{\mathbf{H}}$ for finding the optimal \mathbf{K}_x .

3. Consider time-invariant downlink channel with 3 single-antenna users and a single BS with n_t transmit antennas. The received signal vector $y_k \in \mathbb{C}$ for user k at symbol time m is described by

$$y_k[m] = \sum_{i=1}^{3} \mathbf{h}_k^{\mathrm{H}} \mathbf{u}_i x_i[m] + w_k[m]$$
(3)

where $x_k = \sqrt{p_k} d_k$ is the TX symbol of user k split into the normalised data symbol $d_k \in \mathbb{C}$ (E $[|d_k|^2] = 1$) and the corresponding power allocation p_k , $\mathbf{u}_k \in \mathbb{C}^{n_t}$ is the normalised beamformer, $\|\mathbf{u}_k\| = 1$, $w_k \sim \mathcal{CN}(0, N_0)$ is the complex white Gaussian noise and $\mathbf{h}_k \in \mathbb{C}^{n_t}$ is the channel vector of user k ideally known at the transmitter.

- 3.1 Draw a figure illustrating the system model in (3).
- 3.2 Write the signal-to-interference-plus-noise ratio (SINR) of user k assuming linear beamforming.
- 3.3 Write the SINR of user 2 assuming Costa (dirty paper) precoding and encoding order 1,3,2.
- 3.4 Assume the channels are orthogonal, i.e., $\mathbf{h}_k^{\mathrm{H}} \mathbf{h}_i = 0 \forall i \neq k$. What is the optimal SINR maximising beamformer $\mathbf{u}_k, \forall k$? Justify your answer.
- 3.5 For fixed linear beamformers $\mathbf{u}_k, k = 1, ..., 3$ and equal target SINR per user γ_{target} , write the single matrix expression for finding the optimal power allocation $\mathbf{p} = [p_1, p_2, p_3]^{\text{T}}$.