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I. LEAST SQUARES ESTIMATION

A. Question 1
Assume that we have the following observed (x,y) pairs: (-0.1,2.2) (0.5, 3.1) (0.8,3.5) (1.1,4.3) (1.7,4.9).

For example, the first observed point is at x = −0.1 with y = 2.2.
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• Estimate parameters a and b of a line y = ax+ b with linear least squares estimation. First write the
observation matrix H for this problem. You can solve the numerical matrix operations in MATLAB.
Show also the estimated values for a and b in your answer.

• Estimate parameters a, b, c of a quadratic y = ax+ b+ cx2 with linear least squares estimation. First
write the observation matrix H for this problem. Show also the estimated values for a, b, c in your
answer.

Answer: For the line, the observation matrix is

H =


−0.1 1
0.5 1
0.8 1
1.1 1
1.7 1


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and
θ =

[
a
b

]
The solution (as the problem is linear least squares) is

θ̂ =
(
HTH

)−1
HTy

where

y =


2.2
3.1
3.5
4.3
4.9


Numerically evaluating the solution, we get that a = 1.55 and b = 2.36.

For the second part, the observation matrix is

H =


−0.1 1 (−0.1)2

0.5 1 (0.5)2

0.8 1 (0.8)2

1.1 1 (1.1)2

1.7 1 (1.7)2


and

θ =

 a
b
c


By using the linear least squares solution numerically, we get that a = 1.6981, b = 2.3341, c = −0.0926.

B. Question 2
Assume signal model

s[k] = k3θ1 + 2kθ2 + 3θ2 + 1

for k = 1, 2, 3. Further assume that the noisy observations (assume zero-mean noise) are x[1] = 7.1,
x[2] = −25.3, and x[3] = −116.0. Find the LSE and also show your estimated values for θ1 and for θ2.
You can do the numerical matrix calculations in MATLAB.

Answer: Let us write the expression for the noisy observations

x[k] = s[k] + w[k]

which can be expanded to
x[k] = k3θ1 + 2kθ2 + 3θ2 + 1 + w[k]

Now let us move the constant terms to left

x[k]− 1 = k3θ1 + 2kθ2 + 3θ2 + w[k]

Now we get linear model
x̃[k] = s̃[k] + w[k]

where
x̃[k] = x[k]− 1

and
s̃[k] = k3θ1 + 2kθ2 + 3θ2
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The corresponding observation matrix is

H =

 1 5
8 7
27 9


and the observation vector is

x̃ = x− 1

Now, by using the theory is linear least squares the solution is

θ̂ =
(
HTH

)−1
HT x̃

Numerically by MATLAB we find that
θ1 ≈ −5.0
θ2 ≈ 2.1

C. Question 3
For the signal model

s[n] =

{
2A 0 ≤ n ≤ M − 1
−A M ≤ n ≤ N − 1

derive the least squares estimator of A. Assume received noisy samples are x[n], n = 0, 1, · · · , N − 1.
Answer: The LSE minimizes

J =
N−1∑
n=0

(x[n]− s[n])2 =
M−1∑
n=0

(x[n]− 2A)2 +
N−1∑
n=M

(x[n] + A)2

To minimize it, let us find the derivate with respect to A

∂J
∂A

= −4
M−1∑
n=0

(x[n]− 2A) + 2
N−1∑
n=M

(x[n] + A)

= −4
M−1∑
n=0

x[n] + 8AM + 2
N−1∑
n=M

x[n] + 2A (N −M)

Let us set the derivate to zero to find the LSE

−4
M−1∑
n=0

x[n] + 8ÂM + 2
N−1∑
n=M

x[n] + 2Â (N −M) = 0

Â (8M + 2 (N −M)) = 4
M−1∑
n=0

x[n]− 2
N−1∑
n=M

x[n]

Now, we can solve for Â and get the LSE

Â =

4
M−1∑
n=0

x[n]− 2
N−1∑
n=M

x[n]

8M + 2 (N −M)
=

2
M−1∑
n=0

x[n]−
N−1∑
n=M

x[n]

4M + (N −M)
=

2
M−1∑
n=0

x[n]−
N−1∑
n=M

x[n]

3M +N

D. Question 4
If the signal model is

s[n] = A+B(−1)n

where n = 0, 1, · · · , N − 1 and N is even. Assume that the noisy observations are x[n]. Find the LSE of

θ =

[
A
B

]
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Answer
Let us use the theory of linear least squares. For that we need find H for the below signal model

s = Hθ

We easily note that

HTH =


1 1
1 −1
...

...
1 1
1 −1


T 

1 1
1 −1
...

...
1 1
1 −1

 =

[
N 0
0 N

]
= NI

We know that the solution for the linear least squres is

θ̂ =

[
Â

B̂

]
=
(
HTH

)−1
HTx =

HTx

N
=


1
N

N−1∑
n=0

x[n]

1
N

N−1∑
n=0

(−1)nx[n]


II. BAYESIAN ESTIMATION

A. Question 1
Let us assume that the joint distribution of measurements z and θ is of the form

p (z, θ) = e−θ

where θ > z, z > 0. Find the MMSE estimator of θ based on the measurement z. Hint:∫
θe−θdθ = −e−θ (θ + 1)

Answer: To get posterior PDF we need to first find p(z). It is obtained as

p (z) =

∞∫
z

p (z, θ) dθ =

∞∫
z

e−θdθ = e−z

The posteriori PDF is

p (θ| z) = p (z, θ)

p (z)
= e−(θ−z)

where θ > z. Now, the MMSE estimator is

θ̂ =

∞∫
z

θe−(θ−z)dθ = ez
∞∫
z

θe−θdθ = ez
[
e−z (z + 1)

]
= z + 1

B. Question 2
We have measurements following the model x[n] = A + w[n], where n = 1, 2, · · · , N . The prior

distribution for the unknown random parameter A is

p (A) =

{
λ exp (−λA) A > 0

0 otherwise

and the noise is white Gaussian noise with variance σ2. We know σ2 and λ. Find MAP estimate of the
unknown random parameter A.
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Answer: Let us store all the observations in a column vector X. The conditional distribution of X
given A is

p (X|A) = 1

(2πσ2)N/2
exp

−

N∑
n=1

(x[n]− A)2

2σ2


Now the joint distribution is

p (X, A) =


λ exp(−λA)

(2πσ2)N/2 exp

−
N∑

n=1
(x[n]−A)2

2σ2

 A > 0

0 otherwise

In order to maximize it, let us assume that A > 0 and take the logarithm.

log p (X, A) = log (λ)− λA− N

2
log
(
2πσ2

)
−

N∑
n=1

(x[n]− A)2

2σ2

The derivative with respect to A is

∂ log p (X, A)

∂A
= −λ+

N∑
n=1

(x[n]− A)

σ2

We set the derivate to zero and solve for A and get

Â =

N∑
n=1

x[n]

N
− λσ2

N

However, we need to check that estimate is always greater than zero. The second derivative is always
negative. Therefore, the estimate is

ÂMAP = max

0,

N∑
n=1

x[n]

N
− λσ2

N


C. Question 3

We observe the data x[n] for n = 0, 1, · · · , N − 1, where x[n] has the conditional PDF (samples are
conditinally independent)

p (x[n]|λ) = λ

2
exp (−λ |x[n]|)

the prior distribution p(λ) is given by

p (λ) =

{
1/α c ≤ λ ≤ α + c
0 otherwise

Determine (in as simplified form as possible) the MAP estimator for λ using N samples for the cases (1)
c > 0 and (2) c = 0. Hint: remember to consider the validity range of λ.
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Answer: First, we find the joint conditional PDF

p (X|λ) = λN

2N
exp

(
−λ

N−1∑
n=0

|x[n]|

)
The MAP estimator is given by

λ̂ = argmax
λ

p (X|λ) p (λ)

where

p (X|λ) p (λ) =

 λN

α2N
exp

(
−λ

N−1∑
n=0

|x[n]|
)

c ≤ λ ≤ α + c

0 otherwise

The maximum value must occur in the range c ≤ λ ≤ α + c. Let us assume that and find

log (p (X|λ) p (λ)) = N log (λ)−N log(2)− log (α)− λ
N−1∑
n=0

|x[n]|

which is
∂ log (p (X|λ) p (λ))

∂λ
=

N

λ
−

N−1∑
n=0

|x[n]|

To find the maximum value let us set the derivative to zero and solve for θ̂. We get

λ̂ =
1

1
N

N−1∑
n=0

|x[n]|

But we have to make sure that this is in the valid range. If the value if greater than α+ c, we know that
maximum in the valid range occurs at α+ c (since the second derivative is always negative). If the value
is less than c, the maximum occurs at c. Therefore, we get

λ̂ = max

c,min

α + c,
1

1
N

N−1∑
n=0

|x[n]|




When c = 0, we get

λ̂ = max

0,min

α,
1

1
N

N−1∑
n=0

|x[n]|




but we notice that
1

1
N

N−1∑
n=0

|x[n]|

is always positive. Therefore, the max-operation is not needed and the answer is

λ̂ = min

α,
1

1
N

N−1∑
n=0

|x[n]|


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III. STATISTICAL DECISION THEORY AND DETECTION OF SIGNALS

A. Question 1
Determine under what conditions perfect detector (PFA = 0 and PD = 1) for the problem

H0 : x[0] ∼ U [−c, c]

H1 : x[0] ∼ U [1− c, 1 + c]

where c > 0 and U [a, b] denotes a uniform PDF on the interval [a, b], by choosing c.
Answer: We notice that perfect detection is possible when 1 − c > c. Therefore, detection will be

perfect when

0 < c <
1

2

B. Question 2
Find the minimum error probability / MAP decision rule for detecting whether H1 or H0 is true based

on one sample x that follows
H0 : x ∼ N(0, 1)
H1 : x ∼ N(0, 3)

if P (H0) = 2/3 and also if P (H0) = 1/3.
Answer: We know that the MAP decision rule is

p (x|H1)

p (x|H0)
>

P (H0)

P (H1)

First, we notice that P (H1) = 1− P (H0). The Gaussian PDF is

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
where σ2 is the variance and µ is the mean. Therefore, we get as the MAP decision rule

1√
2π3

exp
(
−1

6
x2
)

1√
2π

exp
(
−1

2
x2
) >

P (H0)

1− P (H0)

which can be simplified to
1√
3
exp

(
1

3
x2

)
>

P (H0)

1− P (H0)

which can be solved for x2

x2 > 3 log

(√
3

(
P (H0)

1− P (H0)

))
Taking square root we get

|x| >

√
3 log

(√
3

(
P (H0)

1− P (H0)

))
Detector will choose H1 if this condition is true. Now for P (H0) = 2/3 we get

|x| >
√

3 log
(
2
√
3
)
≈ 1.9306

For P (H0) = 1/3 we notice that the threshold for x2 is negative

x2 > 3 log

(√
3

2

)
≈ −0.4315

Therefore, this condition is always true. Detector will always choose H1.
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C. Question 3
Determine the number of samples N required for DC level A in the WGN detection problem so that

PFA = 10−2 and PD = 0.99. We know that the SNR is 10 log10(A
2/σ2) = −30 dB. Assume that A > 0.

Answer: We know that NP decision rule is
p (x|H1)

p (x|H0)
> γ

The Gaussian PDF for a single sample is
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
Since the samples are independent we get as the NP test

1

(2πσ2)N/2 exp

(
− 1

2σ2

N−1∑
n=0

(x[n]− A)2
)

1

(2πσ2)N/2 exp

(
− 1

2σ2

N−1∑
n=0

x[n]2
) > γ

which can be simplified to

A
N−1∑
n=0

x[n] > σ2 log (γ) +
1

2

N−1∑
n=0

A2

Now we get
1

N

N−1∑
n=0

x[n] >
σ2

AN
log (γ) +

A

2
= γ′

The test statistic is linear combination of independent Gaussians. Therefore, it is also Gaussian. The mean
under H0 is 0 and variance under H0 is σ2/N . Therefore, the probability of false alarm is

PFA = Q

 γ′√
σ2

N


Now, the threshold for given probability of false alarm is

γ′ =

√
σ2

N
Q−1 (PFA)

To get probability of detection, we need to find mean and variance under H1. Variance remains the same
but now the mean is A. Therefore, probability of detection is

PD = Q

γ′ − A√
σ2

N

 = Q

(
Q−1 (PFA)−

√
NA2

σ2

)
Let us solve for N :

N =
σ2

A2

(
Q−1 (PFA)−Q−1 (PD)

)2
We know that

10log10

(
A2

σ2

)
= −30

Therefore,
A2

σ2
= 0.001

Finally, we get the required number of samples N as (after rounding up)

N = 21648
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