SSP1 Homeworks

John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract

The abstract goes here.

Index Terms

IEEE, IEEEtran, journal, LATEX, paper, template.

I. LEAST SQUARES ESTIMATION

A. Question 1

Assume that we have the following observed (x,y) pairs: (-0.1,2.2) (0.5, 3.1) (0.8,3.5) (1.1,4.3) (1.7,4.9). For example, the first observed point is at x = -0.1 with y = 2.2.

- Estimate parameters a and b of a line y = ax + b with linear least squares estimation. First write the observation matrix H for this problem. You can solve the numerical matrix operations in MATLAB. Show also the estimated values for a and b in your answer.
- Estimate parameters a, b, c of a quadratic $y = ax + b + cx^2$ with linear least squares estimation. First write the observation matrix **H** for this problem. Show also the estimated values for a, b, c in your answer.

Answer: For the line, the observation matrix is

$$\mathbf{H} = \begin{bmatrix} -0.1 & 1 & -0.5 & 1 \\ 0.5 & 1 & 0.8 & 1 \\ 1.1 & 1 & 1 \\ 1.7 & 1 & -0.5 \end{bmatrix}$$

M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.

Manuscript received April 19, 2005; revised August 26, 2015.

and

$$oldsymbol{ heta} = \left[egin{array}{c} a \\ b \end{array}
ight]$$

The solution (as the problem is linear least squares) is

$$\hat{\boldsymbol{ heta}} = \left(\mathbf{H}^T\mathbf{H}\right)^{-1}\mathbf{H}^T\mathbf{y}$$

where

$$\mathbf{y} = \begin{bmatrix} 2.2 \\ 3.1 \\ 3.5 \\ 4.3 \\ 4.9 \end{bmatrix}$$

Numerically evaluating the solution, we get that a = 1.55 and b = 2.36.

For the second part, the observation matrix is

$$\mathbf{H} = \begin{bmatrix} -0.1 & 1 & (-0.1)^2 \\ 0.5 & 1 & (0.5)^2 \\ 0.8 & 1 & (0.8)^2 \\ 1.1 & 1 & (1.1)^2 \\ 1.7 & 1 & (1.7)^2 \end{bmatrix}$$
$$\boldsymbol{\theta} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

and

By using the linear least squares solution numerically, we get that
$$a = 1.6981$$
, $b = 2.3341$, $c = -0.0926$.

B. Question 2

Assume signal model

$$\mathbf{s}[k] = k^3\theta_1 + 2k\theta_2 + 3\theta_2 + 1$$

for k = 1, 2, 3. Further assume that the noisy observations (assume zero-mean noise) are x[1] = 7.1, x[2] = -25.3, and x[3] = -116.0. Find the LSE and also show your estimated values for θ_1 and for θ_2 . You can do the numerical matrix calculations in MATLAB.

Answer: Let us write the expression for the noisy observations

$$x[k] = s[k] + w[k]$$

which can be expanded to

$$x[k] = k^{3}\theta_{1} + 2k\theta_{2} + 3\theta_{2} + 1 + w[k]$$

Now let us move the constant terms to left

$$x[k] - 1 = k^3\theta_1 + 2k\theta_2 + 3\theta_2 + w[k]$$

Now we get linear model

where

$$\tilde{x}[k] = x[k] - 1$$

and

$$\tilde{s}[k] = k^3\theta_1 + 2k\theta_2 + 3\theta_2$$

The corresponding observation matrix is

$$\mathbf{H} = \begin{bmatrix} 1 & 5\\ 8 & 7\\ 27 & 9 \end{bmatrix}$$

 $\tilde{\mathbf{x}} = \mathbf{x} - 1$

and the observation vector is

Now, by using the theory is linear least squares the solution is

$$\hat{\theta} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \tilde{\mathbf{x}}$$

Numerically by MATLAB we find that

$$\theta_1 \approx -5.0$$
$$\theta_2 \approx 2.1$$

C. Question 3

For the signal model

$$s[n] = \begin{cases} 2A & 0 \le n \le M - 1\\ -A & M \le n \le N - 1 \end{cases}$$

derive the least squares estimator of A. Assume received noisy samples are $x[n], n = 0, 1, \dots, N-1$. Answer: The LSE minimizes

$$J = \sum_{n=0}^{N-1} (x[n] - s[n])^2 = \sum_{n=0}^{M-1} (x[n] - 2A)^2 + \sum_{n=M}^{N-1} (x[n] + A)^2$$

To minimize it, let us find the derivate with respect to A

$$\frac{\partial J}{\partial A} = -4\sum_{n=0}^{M-1} (x[n] - 2A) + 2\sum_{n=M}^{N-1} (x[n] + A)$$
$$= -4\sum_{n=0}^{M-1} x[n] + 8AM + 2\sum_{n=M}^{N-1} x[n] + 2A(N - M)$$

Let us set the derivate to zero to find the LSE

$$-4\sum_{n=0}^{M-1} x[n] + 8\hat{A}M + 2\sum_{n=M}^{N-1} x[n] + 2\hat{A}(N-M) = 0$$
$$\hat{A}(8M + 2(N-M)) = 4\sum_{n=0}^{M-1} x[n] - 2\sum_{n=M}^{N-1} x[n]$$

Now, we can solve for \hat{A} and get the LSE

$$\hat{A} = \frac{4\sum_{n=0}^{M-1} x[n] - 2\sum_{n=M}^{N-1} x[n]}{8M + 2(N-M)} = \frac{2\sum_{n=0}^{M-1} x[n] - \sum_{n=M}^{N-1} x[n]}{4M + (N-M)} = \frac{2\sum_{n=0}^{M-1} x[n] - \sum_{n=M}^{N-1} x[n]}{3M + N}$$

D. Question 4

If the signal model is

$$s[n] = A + B(-1)^n$$

where $n = 0, 1, \dots, N-1$ and N is even. Assume that the noisy observations are x[n]. Find the LSE of

$$\boldsymbol{\theta} = \left[\begin{array}{c} A \\ B \end{array} \right]$$

Answer

Let us use the theory of linear least squares. For that we need find H for the below signal model

$$\mathbf{s} = \mathbf{H}\theta$$

We easily note that

$$\mathbf{H}^{T}\mathbf{H} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & -1 \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} N & 0 \\ 0 & N \end{bmatrix} = N\mathbf{I}$$

We know that the solution for the linear least squres is

$$\hat{\theta} = \begin{bmatrix} \hat{A} \\ \hat{B} \end{bmatrix} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x} = \frac{\mathbf{H}^T \mathbf{x}}{N} = \begin{bmatrix} \frac{1}{N} \sum_{n=0}^{N-1} x[n] \\ \frac{1}{N} \sum_{n=0}^{N-1} (-1)^n x[n] \end{bmatrix}$$

II. BAYESIAN ESTIMATION

A. Question 1

Let us assume that the joint distribution of measurements z and θ is of the form

$$p\left(z,\theta\right) = e^{-\theta}$$

where $\theta > z, z > 0$. Find the MMSE estimator of θ based on the measurement z. Hint:

$$\int \theta e^{-\theta} d\theta = -e^{-\theta} \left(\theta + 1\right)$$

Answer: To get posterior PDF we need to first find p(z). It is obtained as

$$p(z) = \int_{z}^{\infty} p(z,\theta) d\theta = \int_{z}^{\infty} e^{-\theta} d\theta = e^{-z}$$

The posteriori PDF is

$$p(\theta|z) = \frac{p(z,\theta)}{p(z)} = e^{-(\theta-z)}$$

where $\theta > z$. Now, the MMSE estimator is

$$\hat{\theta} = \int_{z}^{\infty} \theta e^{-(\theta-z)} d\theta = e^{z} \int_{z}^{\infty} \theta e^{-\theta} d\theta = e^{z} \left[e^{-z} \left(z+1 \right) \right] = z+1$$

B. Question 2

We have measurements following the model x[n] = A + w[n], where $n = 1, 2, \dots, N$. The prior distribution for the unknown random parameter A is

$$p(A) = \begin{cases} \lambda \exp(-\lambda A) & A > 0\\ 0 & \text{otherwise} \end{cases}$$

and the noise is white Gaussian noise with variance σ^2 . We know σ^2 and λ . Find MAP estimate of the unknown random parameter A.

5

Answer: Let us store all the observations in a column vector X. The conditional distribution of X given A is $\begin{pmatrix} & N \\ & \end{pmatrix}$

$$p(\mathbf{X}|A) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\sum_{n=1}^{N} (x[n] - A)^2}{2\sigma^2}\right)$$

Now the joint distribution is

$$p(\mathbf{X}, A) = \begin{cases} \frac{\lambda \exp(-\lambda A)}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\sum\limits_{n=1}^{N} (x[n]-A)^2}{2\sigma^2}\right) & A > 0\\ 0 & \text{otherwise} \end{cases}$$

In order to maximize it, let us assume that A > 0 and take the logarithm.

$$\log p(\mathbf{X}, A) = \log (\lambda) - \lambda A - \frac{N}{2} \log \left(2\pi\sigma^2\right) - \frac{\sum_{n=1}^{N} \left(x[n] - A\right)^2}{2\sigma^2}$$

The derivative with respect to A is

$$\frac{\partial \log p\left(\mathbf{X}, A\right)}{\partial A} = -\lambda + \frac{\sum_{n=1}^{N} \left(x[n] - A\right)}{\sigma^2}$$

3.7

We set the derivate to zero and solve for A and get

$$\hat{A} = \frac{\sum\limits_{n=1}^{N} x[n]}{N} - \frac{\lambda \sigma^2}{N}$$

However, we need to check that estimate is always greater than zero. The second derivative is always negative. Therefore, the estimate is

$$\hat{A}_{\text{MAP}} = \max\left(0, \frac{\sum\limits_{n=1}^{N} x[n]}{N} - \frac{\lambda \sigma^2}{N}\right)$$

C. Question 3

We observe the data x[n] for $n = 0, 1, \dots, N-1$, where x[n] has the conditional PDF (samples are conditinally independent)

$$p(x[n]|\lambda) = \frac{\lambda}{2} \exp(-\lambda |x[n]|)$$

the prior distribution $p(\lambda)$ is given by

$$p(\lambda) = \begin{cases} 1/_{\alpha} & c \le \lambda \le \alpha + c \\ 0 & \text{otherwise} \end{cases}$$

Determine (in as simplified form as possible) the MAP estimator for λ using N samples for the cases (1) c > 0 and (2) c = 0. Hint: remember to consider the validity range of λ .

Answer: First, we find the joint conditional PDF

$$p(\mathbf{X}|\lambda) = \frac{\lambda^{N}}{2^{N}} \exp\left(-\lambda \sum_{n=0}^{N-1} |x[n]|\right)$$

The MAP estimator is given by

$$\hat{\lambda} = \arg\max_{\lambda} p\left(\mathbf{X} | \lambda\right) p\left(\lambda\right)$$

where

$$p(\mathbf{X}|\lambda) p(\lambda) = \begin{cases} \frac{\lambda^{N}}{\alpha 2^{N}} \exp\left(-\lambda \sum_{n=0}^{N-1} |x[n]|\right) & c \le \lambda \le \alpha + c\\ 0 & \text{otherwise} \end{cases}$$

The maximum value must occur in the range $c \leq \lambda \leq \alpha + c$. Let us assume that and find

$$\log \left(p\left(\mathbf{X} | \lambda \right) p\left(\lambda \right) \right) = N \log \left(\lambda \right) - N \log(2) - \log \left(\alpha \right) - \lambda \sum_{n=0}^{N-1} |x[n]|$$

which is

$$\frac{\partial \log \left(p\left(\mathbf{X} \right| \lambda \right) p\left(\lambda \right) \right)}{\partial \lambda} = \frac{N}{\lambda} - \sum_{n=0}^{N-1} \left| x[n] \right|$$

To find the maximum value let us set the derivative to zero and solve for $\hat{\theta}$. We get

$$\hat{\lambda} = \frac{1}{\frac{1}{\frac{1}{N}\sum_{n=0}^{N-1} |x[n]|}}$$

But we have to make sure that this is in the valid range. If the value if greater than $\alpha + c$, we know that maximum in the valid range occurs at $\alpha + c$ (since the second derivative is always negative). If the value is less than c, the maximum occurs at c. Therefore, we get

$$\hat{\lambda} = \max\left(c, \min\left(\alpha + c, \frac{1}{\frac{1}{N}\sum\limits_{n=0}^{N-1} |x[n]|}\right)\right)$$

When c = 0, we get

$$\hat{\lambda} = \max\left(0, \min\left(\alpha, \frac{1}{\frac{1}{N}\sum\limits_{n=0}^{N-1} |x[n]|}\right)\right)$$

but we notice that

$$\frac{1}{\frac{1}{\frac{1}{N}\sum\limits_{n=0}^{N-1}|x[n]|}}$$

is always positive. Therefore, the max-operation is not needed and the answer is

$$\hat{\lambda} = \min\left(\alpha, \frac{1}{\frac{1}{N}\sum_{n=0}^{N-1} |x[n]|}\right)$$

III. STATISTICAL DECISION THEORY AND DETECTION OF SIGNALS

A. Question 1

Determine under what conditions perfect detector $(P_{\rm FA}=0 \text{ and } P_{\rm D}=1)$ for the problem

$$H_0: x[0] \sim U[-c, c]$$

 $H_1: x[0] \sim U[1-c, 1+c]$

where c > 0 and U[a, b] denotes a uniform PDF on the interval [a, b], by choosing c.

Answer: We notice that perfect detection is possible when 1 - c > c. Therefore, detection will be perfect when

$$0 < c < \frac{1}{2}$$

B. Question 2

Find the minimum error probability / MAP decision rule for detecting whether H_1 or H_0 is true based on one sample x that follows

$$H_0: x \sim N(0, 1)$$

 $H_1: x \sim N(0, 3)$

if $P(H_0) = 2/3$ and also if $P(H_0) = 1/3$.

Answer: We know that the MAP decision rule is

$$\frac{p(x|H_1)}{p(x|H_0)} > \frac{P(H_0)}{P(H_1)}$$

First, we notice that $P(H_1) = 1 - P(H_0)$. The Gaussian PDF is

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right)$$

where σ^2 is the variance and μ is the mean. Therefore, we get as the MAP decision rule

$$\frac{\frac{1}{\sqrt{2\pi^3}} \exp\left(-\frac{1}{6}x^2\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)} > \frac{P(H_0)}{1 - P(H_0)}$$

which can be simplified to

$$\frac{1}{\sqrt{3}}\exp\left(\frac{1}{3}x^2\right) > \frac{P(H_0)}{1 - P(H_0)}$$

which can be solved for
$$x^2$$

$$x^{2} > 3 \log \left(\sqrt{3} \left(\frac{P(H_{0})}{1 - P(H_{0})} \right) \right)$$

Taking square root we get

$$|x| > \sqrt{3 \log \left(\sqrt{3} \left(\frac{P(H_0)}{1 - P(H_0)}\right)\right)}$$

Detector will choose H_1 if this condition is true. Now for $P(H_0) = 2/3$ we get

$$|x| > \sqrt{3\log\left(2\sqrt{3}\right)} \approx 1.9306$$

For $P(H_0) = 1/3$ we notice that the threshold for x^2 is negative

$$x^2 > 3\log\left(\frac{\sqrt{3}}{2}\right) \approx -0.4315$$

Therefore, this condition is always true. Detector will always choose H_1 .

C. Question 3

Determine the number of samples N required for DC level A in the WGN detection problem so that $P_{FA} = 10^{-2}$ and $P_D = 0.99$. We know that the SNR is $10 \log_{10}(A^2/\sigma^2) = -30$ dB. Assume that A > 0. Answer: We know that NP decision rule is

$$\frac{p\left(x\mid H_{1}\right)}{p\left(x\mid H_{0}\right)} > \gamma$$

The Gaussian PDF for a single sample is

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Since the samples are independent we get as the NP test

$$\frac{\frac{1}{(2\pi\sigma^2)^{N/2}}\exp\left(-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]-A)^2\right)}{\frac{1}{(2\pi\sigma^2)^{N/2}}\exp\left(-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}x[n]^2\right)} > \gamma$$

which can be simplified to

$$A\sum_{n=0}^{N-1} x[n] > \sigma^2 \log(\gamma) + \frac{1}{2} \sum_{n=0}^{N-1} A^2$$

Now we get

$$\frac{1}{N}\sum_{n=0}^{N-1} x[n] > \frac{\sigma^2}{AN}\log\left(\gamma\right) + \frac{A}{2} = \gamma'$$

The test statistic is linear combination of independent Gaussians. Therefore, it is also Gaussian. The mean under H_0 is 0 and variance under H_0 is σ^2/N . Therefore, the probability of false alarm is

$$P_{\rm FA} = Q\left(\frac{\gamma'}{\sqrt{\frac{\sigma^2}{N}}}\right)$$

Now, the threshold for given probability of false alarm is

$$\gamma' = \sqrt{\frac{\sigma^2}{N}} Q^{-1} \left(P_{\rm FA} \right)$$

To get probability of detection, we need to find mean and variance under H_1 . Variance remains the same but now the mean is A. Therefore, probability of detection is

$$P_{\rm D} = Q\left(\frac{\gamma' - A}{\sqrt{\frac{\sigma^2}{N}}}\right) = Q\left(Q^{-1}\left(P_{\rm FA}\right) - \sqrt{\frac{NA^2}{\sigma^2}}\right)$$

Let us solve for N:

$$N = \frac{\sigma^2}{A^2} \left(Q^{-1} \left(P_{\rm FA} \right) - Q^{-1} \left(P_{\rm D} \right) \right)^2$$

We know that

$$10\log_{10}\left(\frac{A^2}{\sigma^2}\right) = -30$$

Therefore,

$$\frac{A^2}{\sigma^2} = 0.001$$

Finally, we get the required number of samples N as (after rounding up)

$$N = 21648$$

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to ETEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.