SSP1 Homeworks

John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract

The abstract goes here.

\section*{Index Terms}

IEEE, IEEEtran, journal, LTTE $_{E} \mathrm{X}$, paper, template.

I. LEAST SQUARES ESTIMATION

A. Question 1

Assume that we have the following observed (x,y) pairs: $(-0.1,2.2)(0.5,3.1)(0.8,3.5)(1.1,4.3)(1.7,4.9)$. For example, the first observed point is at $x=-0.1$ with $y=2.2$.

- Estimate parameters a and b of a line $y=a x+b$ with linear least squares estimation. First write the observation matrix \mathbf{H} for this problem. You can solve the numerical matrix operations in MATLAB. Show also the estimated values for a and b in your answer.
- Estimate parameters a, b, c of a quadratic $y=a x+b+c x^{2}$ with linear least squares estimation. First write the observation matrix \mathbf{H} for this problem. Show also the estimated values for a, b, c in your answer.
Answer: For the line, the observation matrix is

$$
\mathbf{H}=\left[\begin{array}{cc}
-0.1 & 1 \\
0.5 & 1 \\
0.8 & 1 \\
1.1 & 1 \\
1.7 & 1
\end{array}\right]
$$

[^0] e-mail: (see http://www.michaelshell.org/contact.html).
J. Doe and J. Doe are with Anonymous University.

Manuscript received April 19, 2005; revised August 26, 2015.
and

$$
\boldsymbol{\theta}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

The solution (as the problem is linear least squares) is

$$
\hat{\boldsymbol{\theta}}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{y}
$$

where

$$
\mathbf{y}=\left[\begin{array}{l}
2.2 \\
3.1 \\
3.5 \\
4.3 \\
4.9
\end{array}\right]
$$

Numerically evaluating the solution, we get that $a=1.55$ and $b=2.36$.
For the second part, the observation matrix is

$$
\mathbf{H}=\left[\begin{array}{ccc}
-0.1 & 1 & (-0.1)^{2} \\
0.5 & 1 & (0.5)^{2} \\
0.8 & 1 & (0.8)^{2} \\
1.1 & 1 & (1.1)^{2} \\
1.7 & 1 & (1.7)^{2}
\end{array}\right]
$$

and

$$
\boldsymbol{\theta}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

By using the linear least squares solution numerically, we get that $a=1.6981, b=2.3341, c=-0.0926$.

B. Question 2

Assume signal model

$$
s[k]=k^{3} \theta_{1}+2 k \theta_{2}+3 \theta_{2}+1
$$

for $k=1,2,3$. Further assume that the noisy observations (assume zero-mean noise) are $x[1]=7.1$, $x[2]=-25.3$, and $x[3]=-116.0$. Find the LSE and also show your estimated values for θ_{1} and for θ_{2}. You can do the numerical matrix calculations in MATLAB.

Answer: Let us write the expression for the noisy observations

$$
x[k]=s[k]+w[k]
$$

which can be expanded to

$$
x[k]=k^{3} \theta_{1}+2 k \theta_{2}+3 \theta_{2}+1+w[k]
$$

Now let us move the constant terms to left

$$
x[k]-1=k^{3} \theta_{1}+2 k \theta_{2}+3 \theta_{2}+w[k]
$$

Now we get linear model

$$
\tilde{x}[k]=\tilde{s}[k]+w[k]
$$

where

$$
\tilde{x}[k]=x[k]-1
$$

and

$$
\tilde{s}[k]=k^{3} \theta_{1}+2 k \theta_{2}+3 \theta_{2}
$$

The corresponding observation matrix is

$$
\mathbf{H}=\left[\begin{array}{cc}
1 & 5 \\
8 & 7 \\
27 & 9
\end{array}\right]
$$

and the observation vector is

$$
\tilde{\mathrm{x}}=\mathrm{x}-1
$$

Now, by using the theory is linear least squares the solution is

$$
\hat{\theta}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \tilde{\mathbf{x}}
$$

Numerically by MATLAB we find that

$$
\begin{aligned}
& \theta_{1} \approx-5.0 \\
& \theta_{2} \approx 2.1
\end{aligned}
$$

C. Question 3

For the signal model

$$
s[n]=\left\{\begin{array}{cc}
2 A & 0 \leq n \leq M-1 \\
-A & M \leq n \leq N-1
\end{array}\right.
$$

derive the least squares estimator of A. Assume received noisy samples are $x[n], n=0,1, \cdots, N-1$.
Answer: The LSE minimizes

$$
J=\sum_{n=0}^{N-1}(x[n]-s[n])^{2}=\sum_{n=0}^{M-1}(x[n]-2 A)^{2}+\sum_{n=M}^{N-1}(x[n]+A)^{2}
$$

To minimize it, let us find the derivate with respect to A

$$
\begin{aligned}
& \frac{\partial J}{\partial A}=-4 \sum_{n=0}^{M-1}(x[n]-2 A)+2 \sum_{n=M}^{N-1}(x[n]+A) \\
& =-4 \sum_{n=0}^{M-1} x[n]+8 A M+2 \sum_{n=M}^{N-1} x[n]+2 A(N-M)
\end{aligned}
$$

Let us set the derivate to zero to find the LSE

$$
\begin{aligned}
& -4 \sum_{n=0}^{M-1} x[n]+8 \hat{A} M+2 \sum_{n=M}^{N-1} x[n]+2 \hat{A}(N-M)=0 \\
& \hat{A}(8 M+2(N-M))=4 \sum_{n=0}^{M-1} x[n]-2 \sum_{n=M}^{N-1} x[n]
\end{aligned}
$$

Now, we can solve for \hat{A} and get the LSE

$$
\hat{A}=\frac{4 \sum_{n=0}^{M-1} x[n]-2 \sum_{n=M}^{N-1} x[n]}{8 M+2(N-M)}=\frac{2 \sum_{n=0}^{M-1} x[n]-\sum_{n=M}^{N-1} x[n]}{4 M+(N-M)}=\frac{2 \sum_{n=0}^{M-1} x[n]-\sum_{n=M}^{N-1} x[n]}{3 M+N}
$$

D. Question 4

If the signal model is

$$
s[n]=A+B(-1)^{n}
$$

where $n=0,1, \cdots, N-1$ and N is even. Assume that the noisy observations are $x[n]$. Find the LSE of

$$
\boldsymbol{\theta}=\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

Answer

Let us use the theory of linear least squares. For that we need find \mathbf{H} for the below signal model

$$
\mathbf{s}=\mathbf{H} \theta
$$

We easily note that

$$
\mathbf{H}^{T} \mathbf{H}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\vdots & \vdots \\
1 & 1 \\
1 & -1
\end{array}\right]^{T}\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\vdots & \vdots \\
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
N & 0 \\
0 & N
\end{array}\right]=N \mathbf{I}
$$

We know that the solution for the linear least squres is

$$
\hat{\theta}=\left[\begin{array}{c}
\hat{A} \\
\hat{B}
\end{array}\right]=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{x}=\frac{\mathbf{H}^{T} \mathbf{x}}{N}=\left[\begin{array}{c}
\frac{1}{N} \sum_{n=0}^{N-1} x[n] \\
\frac{1}{N} \sum_{n=0}^{N-1}(-1)^{n} x[n]
\end{array}\right]
$$

II. BAYESIAN ESTIMATION

A. Question 1

Let us assume that the joint distribution of measurements z and θ is of the form

$$
p(z, \theta)=e^{-\theta}
$$

where $\theta>z, z>0$. Find the MMSE estimator of θ based on the measurement z. Hint:

$$
\int \theta e^{-\theta} d \theta=-e^{-\theta}(\theta+1)
$$

Answer: To get posterior PDF we need to first find $p(z)$. It is obtained as

$$
p(z)=\int_{z}^{\infty} p(z, \theta) d \theta=\int_{z}^{\infty} e^{-\theta} d \theta=e^{-z}
$$

The posteriori PDF is

$$
p(\theta \mid z)=\frac{p(z, \theta)}{p(z)}=e^{-(\theta-z)}
$$

where $\theta>z$. Now, the MMSE estimator is

$$
\hat{\theta}=\int_{z}^{\infty} \theta e^{-(\theta-z)} d \theta=e^{z} \int_{z}^{\infty} \theta e^{-\theta} d \theta=e^{z}\left[e^{-z}(z+1)\right]=z+1
$$

B. Question 2

We have measurements following the model $x[n]=A+w[n]$, where $n=1,2, \cdots, N$. The prior distribution for the unknown random parameter A is

$$
p(A)=\left\{\begin{array}{cc}
\lambda \exp (-\lambda A) & A>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and the noise is white Gaussian noise with variance σ^{2}. We know σ^{2} and λ. Find MAP estimate of the unknown random parameter A.

Answer: Let us store all the observations in a column vector \mathbf{X}. The conditional distribution of \mathbf{X} given A is

$$
p(\mathbf{X} \mid A)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left(-\frac{\sum_{n=1}^{N}(x[n]-A)^{2}}{2 \sigma^{2}}\right)
$$

Now the joint distribution is

$$
p(\mathbf{X}, A)=\left\{\begin{array}{cc}
\frac{\lambda \exp (-\lambda A)}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left(-\frac{\sum_{n=1}^{N}(x[n]-A)^{2}}{2 \sigma^{2}}\right) & A>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

In order to maximize it, let us assume that $A>0$ and take the logarithm.

$$
\log p(\mathbf{X}, A)=\log (\lambda)-\lambda A-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{\sum_{n=1}^{N}(x[n]-A)^{2}}{2 \sigma^{2}}
$$

The derivative with respect to A is

$$
\frac{\partial \log p(\mathbf{X}, A)}{\partial A}=-\lambda+\frac{\sum_{n=1}^{N}(x[n]-A)}{\sigma^{2}}
$$

We set the derivate to zero and solve for A and get

$$
\hat{A}=\frac{\sum_{n=1}^{N} x[n]}{N}-\frac{\lambda \sigma^{2}}{N}
$$

However, we need to check that estimate is always greater than zero. The second derivative is always negative. Therefore, the estimate is

$$
\hat{A}_{\mathrm{MAP}}=\max \left(0, \frac{\sum_{n=1}^{N} x[n]}{N}-\frac{\lambda \sigma^{2}}{N}\right)
$$

C. Question 3

We observe the data $x[n]$ for $n=0,1, \cdots, N-1$, where $x[n]$ has the conditional PDF (samples are conditinally independent)

$$
p(x[n] \mid \lambda)=\frac{\lambda}{2} \exp (-\lambda|x[n]|)
$$

the prior distribution $p(\lambda)$ is given by

$$
p(\lambda)=\left\{\begin{array}{cc}
1 / \alpha & c \leq \lambda \leq \alpha+c \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine (in as simplified form as possible) the MAP estimator for λ using N samples for the cases (1) $c>0$ and (2) $c=0$. Hint: remember to consider the validity range of λ.

Answer: First, we find the joint conditional PDF

$$
p(\mathbf{X} \mid \lambda)=\frac{\lambda^{N}}{2^{N}} \exp \left(-\lambda \sum_{n=0}^{N-1}|x[n]|\right)
$$

The MAP estimator is given by

$$
\hat{\lambda}=\arg \max _{\lambda} p(\mathbf{X} \mid \lambda) p(\lambda)
$$

where

$$
p(\mathbf{X} \mid \lambda) p(\lambda)=\left\{\begin{array}{cc}
\frac{\lambda^{N}}{\alpha 2^{N}} \exp \left(-\lambda \sum_{n=0}^{N-1}|x[n]|\right) & c \leq \lambda \leq \alpha+c \\
0 & \text { otherwise }
\end{array}\right.
$$

The maximum value must occur in the range $c \leq \lambda \leq \alpha+c$. Let us assume that and find

$$
\log (p(\mathbf{X} \mid \lambda) p(\lambda))=N \log (\lambda)-N \log (2)-\log (\alpha)-\lambda \sum_{n=0}^{N-1}|x[n]|
$$

which is

$$
\frac{\partial \log (p(\mathbf{X} \mid \lambda) p(\lambda))}{\partial \lambda}=\frac{N}{\lambda}-\sum_{n=0}^{N-1}|x[n]|
$$

To find the maximum value let us set the derivative to zero and solve for $\hat{\theta}$. We get

$$
\hat{\lambda}=\frac{1}{\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|}
$$

But we have to make sure that this is in the valid range. If the value if greater than $\alpha+c$, we know that maximum in the valid range occurs at $\alpha+c$ (since the second derivative is always negative). If the value is less than c, the maximum occurs at c. Therefore, we get

$$
\hat{\lambda}=\max \left(c, \min \left(\alpha+c, \frac{1}{\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|}\right)\right)
$$

When $c=0$, we get

$$
\hat{\lambda}=\max \left(0, \min \left(\alpha, \frac{1}{\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|}\right)\right)
$$

but we notice that

$$
\frac{1}{\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|}
$$

is always positive. Therefore, the max-operation is not needed and the answer is

$$
\hat{\lambda}=\min \left(\alpha, \frac{1}{\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|}\right)
$$

III. Statistical decision theory and detection of signals

A. Question 1

Determine under what conditions perfect detector $\left(\mathrm{P}_{\mathrm{FA}}=0\right.$ and $\left.\mathrm{P}_{\mathrm{D}}=1\right)$ for the problem

$$
\begin{gathered}
H_{0}: x[0] \sim U[-c, c] \\
H_{1}: x[0] \sim U[1-c, 1+c]
\end{gathered}
$$

where $c>0$ and $U[a, b]$ denotes a uniform PDF on the interval $[a, b]$, by choosing c.
Answer: We notice that perfect detection is possible when $1-c>c$. Therefore, detection will be perfect when

$$
0<c<\frac{1}{2}
$$

B. Question 2

Find the minimum error probability / MAP decision rule for detecting whether H_{1} or H_{0} is true based on one sample x that follows

$$
\begin{aligned}
& H_{0}: x \sim N(0,1) \\
& H_{1}: x \sim N(0,3)
\end{aligned}
$$

if $P\left(H_{0}\right)=2 / 3$ and also if $P\left(H_{0}\right)=1 / 3$.
Answer: We know that the MAP decision rule is

$$
\frac{p\left(x \mid H_{1}\right)}{p\left(x \mid H_{0}\right)}>\frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

First, we notice that $P\left(H_{1}\right)=1-P\left(H_{0}\right)$. The Gaussian PDF is

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

where σ^{2} is the variance and μ is the mean. Therefore, we get as the MAP decision rule

$$
\frac{\frac{1}{\sqrt{2 \pi 3}} \exp \left(-\frac{1}{6} x^{2}\right)}{\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)}>\frac{P\left(H_{0}\right)}{1-P\left(H_{0}\right)}
$$

which can be simplified to

$$
\frac{1}{\sqrt{3}} \exp \left(\frac{1}{3} x^{2}\right)>\frac{P\left(H_{0}\right)}{1-P\left(H_{0}\right)}
$$

which can be solved for x^{2}

$$
x^{2}>3 \log \left(\sqrt{3}\left(\frac{P\left(H_{0}\right)}{1-P\left(H_{0}\right)}\right)\right)
$$

Taking square root we get

$$
|x|>\sqrt{3 \log \left(\sqrt{3}\left(\frac{P\left(H_{0}\right)}{1-P\left(H_{0}\right)}\right)\right)}
$$

Detector will choose H_{1} if this condition is true. Now for $P\left(H_{0}\right)=2 / 3$ we get

$$
|x|>\sqrt{3 \log (2 \sqrt{3})} \approx 1.9306
$$

For $P\left(H_{0}\right)=1 / 3$ we notice that the threshold for x^{2} is negative

$$
x^{2}>3 \log \left(\frac{\sqrt{3}}{2}\right) \approx-0.4315
$$

Therefore, this condition is always true. Detector will always choose H_{1}.

C. Question 3

Determine the number of samples N required for DC level A in the WGN detection problem so that $\mathrm{P}_{\mathrm{FA}}=10^{-2}$ and $\mathrm{P}_{\mathrm{D}}=0.99$. We know that the SNR is $10 \log _{10}\left(A^{2} / \sigma^{2}\right)=-30 \mathrm{~dB}$. Assume that $A>0$.

Answer: We know that NP decision rule is

$$
\frac{p\left(x \mid H_{1}\right)}{p\left(x \mid H_{0}\right)}>\gamma
$$

The Gaussian PDF for a single sample is

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

Since the samples are independent we get as the NP test

$$
\frac{\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A)^{2}\right)}{\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{n=0}^{N-1} x[n]^{2}\right)}>\gamma
$$

which can be simplified to

$$
A \sum_{n=0}^{N-1} x[n]>\sigma^{2} \log (\gamma)+\frac{1}{2} \sum_{n=0}^{N-1} A^{2}
$$

Now we get

$$
\frac{1}{N} \sum_{n=0}^{N-1} x[n]>\frac{\sigma^{2}}{A N} \log (\gamma)+\frac{A}{2}=\gamma^{\prime}
$$

The test statistic is linear combination of independent Gaussians. Therefore, it is also Gaussian. The mean under H_{0} is 0 and variance under H_{0} is σ^{2} / N. Therefore, the probability of false alarm is

$$
P_{\mathrm{FA}}=Q\left(\frac{\gamma^{\prime}}{\sqrt{\frac{\sigma^{2}}{N}}}\right)
$$

Now, the threshold for given probability of false alarm is

$$
\gamma^{\prime}=\sqrt{\frac{\sigma^{2}}{N}} Q^{-1}\left(P_{\mathrm{FA}}\right)
$$

To get probability of detection, we need to find mean and variance under H_{1}. Variance remains the same but now the mean is A. Therefore, probability of detection is

$$
P_{\mathrm{D}}=Q\left(\frac{\gamma^{\prime}-A}{\sqrt{\frac{\sigma^{2}}{N}}}\right)=Q\left(Q^{-1}\left(P_{\mathrm{FA}}\right)-\sqrt{\frac{N A^{2}}{\sigma^{2}}}\right)
$$

Let us solve for N :

$$
N=\frac{\sigma^{2}}{A^{2}}\left(Q^{-1}\left(P_{\mathrm{FA}}\right)-Q^{-1}\left(P_{\mathrm{D}}\right)\right)^{2}
$$

We know that

$$
10 \log _{10}\left(\frac{A^{2}}{\sigma^{2}}\right)=-30
$$

Therefore,

$$
\frac{A^{2}}{\sigma^{2}}=0.001
$$

Finally, we get the required number of samples N as (after rounding up)

$$
N=21648
$$

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to ${ }^{E} T_{E} X$, 3rd ed. Harlow, England: Addison-Wesley, 1999.

[^0]: M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA

