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I. MVU ESTIMATOR

A. Question 1
We are using estimator

θ̂ =
1

aN

N∑
i=1

(
z[i]2 + b

)
where a and b are constants. In addition we know that E

[
z[i]2

]
= 3 (θ − 2). Determine a and b so that

θ̂ is unbiased estimator of θ.
Answer:

E
[
θ̂
]
= 1

aN

N∑
i=1

E
[
z[i]2 + b

]
= 1

aN

N∑
i=1

(3 (θ − 2) + b)

= 1
aN

N∑
i=1

(3θ − 6 + b) = 3θ−6+b
a

It is obvious that the solution is a = 3 and b = 6.

B. Question 2
Suppose we have random observations given by

Y [k] = θ1 +W [k], k = 0, · · · , N − 1

where each W [k] is independent and identically distributed Gaussian random variable with mean 0 and
variance θ2, so that W [k] ∼ N (0, θ2). Note that both θ1 and θ2 > 0 are unknown. This is called a vector
estimation problem.

We known an unbiased estimator for θ1: the sample mean θ̂1 =
1
N

N−1∑
k=0

Y [k]. This estimator is still valid

in this case because the sample mean does not depend on any unknown parameters.
How about this estimator for θ2:

θ̂2 =
1

N

N−1∑
k=0

(
Y [k]− θ̂1

)2
Is this estimator unbiased?

M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.
Manuscript received April 19, 2005; revised August 26, 2015.



2

Answer:

E
[
θ̂2

]
= 1

N

N−1∑
l=0

E

[(
Y [l]− θ̂1

)2]
= 1

N

N−1∑
l=0

E

[(
Y [l]− 1

N

N−1∑
k=0

Y [k]

)2
]

= 1
N

N−1∑
l=0

E

[(
θ1 +W [l]− 1

N

N−1∑
k=0

(θ1 +W [k])

)2
]

= 1
N

N−1∑
l=0

E

[(
W [l]− 1

N

N−1∑
k=0

W [k]

)2
]

= 1
N

N−1∑
l=0

E

[(
N
N
W [l]− 1

N

N−1∑
k=0

W [k]

)2
]

= 1
N3

N−1∑
l=0

E

[(
NW [l]−

N−1∑
k=0

W [k]

)2
]

= 1
N3

N−1∑
l=0

E

((N − 1)W [l]−
N−1∑

k=0,k ̸=l

W [k]

)2


= 1
N3

N−1∑
l=0

E

[(
(N − 1)W [l]−

N−1∑
k=0,k ̸=l

W [k]

)(
(N − 1)W [l]−

N−1∑
j=0,j ̸=l

W [j]

)]

= 1
N3

N−1∑
l=0

(
(N − 1)2

)
E
[
W [l]2

]
+ 0 + 0 + 1

N3

N−1∑
l=0

[
N−1∑

k=0,k ̸=l

N−1∑
j=0,j ̸=l

E [W [k]W [j]]

]

= 1
N3

N−1∑
l=0

(
(N − 1)2

)
E
[
W [l]2

]
+ 1

N3

N−1∑
l=0

[
N−1∑

k=0,k ̸=l

E
[
W [k]2

]]
= 1

N3

N−1∑
l=0

(
(N − 1)2

)
θ2 +

1
N3

N−1∑
l=0

[(N − 1) θ2] =
θ2
N2

((
(N − 1)2

)
+ (N − 1)

)
= θ2

N2 (N
2 − 2N + 1 + (N − 1)) = θ2

N2 (N
2 −N) = θ2

(
1− 1

N

)
= θ2

(
N−1
N

)
Therefore, the estimator is biased. Note that we can ”correct” the bias by using instead:

θ̂2 =
1

N − 1

N−1∑
k=0

(
Y [k]− θ̂1

)2
C. Question 3

Find an unbiased estimator for the unknown scalar parameter θ given independent and identically
distributed observations Y [k], k = 0, · · · , N−1. Each observation follows the uniform distribution between
−θ and θ, i.e., Y [k] ∼ U (−θ, θ).

Answer: Let us make a new random variable Z[k] = |Y [k]|. Note that Z [k] ∼ U (0, θ). Therefore,

E

[
1

N

N−1∑
k=0

Z[k]

]
=

θ

2

Then an unbiased estimator for θ would be

θ̂ =
2

N

N−1∑
k=0

|Y [k]|
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We can confirm that

E
[
θ̂
]
=

2

N

N−1∑
k=0

E |Y [k]| = 2

N

N−1∑
k=0

θ

2
=

2

N

θ

2
N = θ

D. Question 4
Suppose you have an unknown scalar parameter θ and get two independent and identically distributed

observations Y [0] and Y [1] with the observation model

Y [k] ∼ U (0, θ)

for k = 0 and k = 1. Consider the following two estimators:

θ̂a = Y [0] + Y [1]

θ̂b =
3
2
max (Y [0] , Y [1])

where the function max outputs the larger of the two inputs. Are both estimators unbiased? Hint: the
distribution of Z = max (Y [0] , Y [1]) is

fZ (z) =

{
2z
θ2

0 ≤ z ≤ θ
0 otherwise

Which estimator is better? Explain.
Answer:

E
[
θ̂a

]
= E [Y [0]] + E [Y [1]] =

θ

2
+

θ

2
= θ

E
[
θ̂b

]
= 3

2
E [max (Y [0] , Y [1])]

= 3
2

θ∫
0

2z
θ2
zdz = 3

2

θ∫
0

2z2

θ2
dz = 3

θ2

θ∫
0

z2dz

= 3
θ2

(
θ3

3
− 0
)
= θ

So both estimators are unbiased, to find out which is better we need to compute variances (as both are
unbiased).

Var
[
θ̂a

]
= Var [Y [0]] + Var [Y [1]] =

θ2

12
+

θ2

12
=

θ2

6

Var
[
θ̂b

]
= 9

4
Var [max (Y [0] , Y [1])]

= 9
4

(
θ∫
0

2z
θ2

(
z − 2

3
θ
)2
dz

)
= 9

2θ2

(
θ∫
0

(
z3 − 4

3
θz2 + 4

9
θ2z
)
dz

)
= 9

2θ2

(
θ4

4
− 4θ4

9
+ 2θ4

9

)
= θ2

8

Therefore, estimator θ̂b is better since it has lower variance.

E. Question 5
Consider the data X[k], k = 0, 1, · · · , N − 1, where each sample is independent and identically

distributed as U (0, θ) (uniform distribution between 0 and θ). Find unbiased estimator for θ.
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Answer: Mean of each sample is

E [X[k]] =

θ∫
0

1

θ
zdz =

1

θ

θ2

2
=

θ

2

Therefore, we can easily note that unbiased estimator is

θ̂ =
2

N

N−1∑
k=0

X[k]

We can confirm this by

E
[
θ̂
]
= 2

N

N−1∑
k=0

E [X[k]] = 2
N

N−1∑
k=0

θ
2

= 2
N

θN
2

= θ

F. Question 6
The data

X[k], k = 0, 1

are observed where each sample is independent and identically distributed as N (0, σ2). We wish to
estimate the variance σ2 with

σ̂2 =
1

2

[
X[0]2 +X[1]2

]
The estimator is unbiased. Find its probability density function. Hint: study about chi-squared distribution
and multiplication of a random variable with a constant.

Answer:
σ̂2 = σ2

2

[
X[0]2

σ2 + X[1]2

σ2

]
∼ σ2

2
χ2 (2)

f (χ2 (2)) = 1
2
e−x/2, x > 0

f
(
σ̂2
)
=

{
2
σ2

1
2
e−

σ̂2

2
2
σ2 = 1

σ2 e
− σ̂2

σ2 σ̂2 > 0
0 otherwise

G. Question 7
Consider the observations

X [n] = A+W [n], n = 0, 1, · · · , N − 1

where A is the unknown parameter to be estimated and W [n] is additive white gaussian noise with variance
σ2. A reasonable unbiased estimator for A is the sample mean:

Â =
1

N

N−1∑
n=0

X [n]

Suppose we want to estimate θ = A2. Is

θ̂ =

(
1

N

N−1∑
n=0

X [n]

)2

unbiased?
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Answer: We remember that

Var [X [n]] = E
[
X[n]2

]
− E[X [n]]2

E
[
X[n]2

]
= Var [X [n]] + E[X [n]]2

Therefore,
E
[
X[n]2

]
= σ2 + A2

And when k ̸= n
E [X [n]X[k]] = E [(A+W [n]) (A+W [k])]
= E [A2 + AW [k] +W [n]A+W [n]W [k]] = A2

We get that

E
[
θ̂
]
= 1

N2

N−1∑
n=0

N−1∑
k=0

E [X [n]X [k]] = 1
N2

(
N−1∑
n=0

E
[
X[n]2

]
+N (N − 1)A2

)
1
N2 ((σ

2 + A2)N +N (N − 1)A2) = A2 + σ2

N

Also, easier way,

E
[
θ̂
]
= E

[
Â2
]
= Var

[
Â
]
+ E

[
Â
]2

=
σ2

N
+ A2

As N → ∞, the estimator θ̂ becomes (asymptotically) unbiased.

H. Question 8
The data

X[k], k = 0, 1, · · · , N − 1

are observed where each sample is independent and identically distributed as N (0, σ2). We wish to
estimate the variance σ2 with

σ̂2 =
1

N

N−1∑
n=0

X[n]2

Notice that mean is known to be zero (it does not need to be estimated). Is this an unbiased estimator?
Also find the variance of σ̂2.

Answer: Let us remember that

Var [X [n]] = E
[
X[n]2

]
− E[X [n]]2

E
[
X[n]2

]
= Var [X [n]] + E[X [n]]2

Therefore,
E
[
X[n]2

]
= σ2

and we get

E
[
σ̂2
]
=

1

N

N−1∑
n=0

E
[
X[n]2

]
=

1

N

N−1∑
n=0

σ2 = σ2

Therefore, the estimator is unbiased. For the variance, we first note by using properties of moments of
Gaussian random variables (with zero-mean as here):

Var
[
X[n]2

]
= E

[
X[n]4

]
− E

[
X[n]2

]2
= 3σ4 − σ4 = 2σ4

Var
[
σ̂2
]
=

1

N2

N−1∑
n=0

Var
[
X[n]2

]
=

1

N2

N−1∑
n=0

2σ4 =
2σ4N

N2
=
2σ4

N
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II. CRLB
A. Question 1

The data
x[n] = 2A+ w[n]

for n = 0, 1, · · · , N − 1 is observed where w[n] is zero-mean white Gaussian noise with variance σ2. We
want to estimate unknown parameter A based on the observations x[n].

1) Find the CRLB for A
2) Find the efficient estimator and verity that it is unbiased and reaches the CRLB.
Answer: By using the theory of signal in white Gaussian noise:

CRLB =
σ2

N−1∑
n=0

(
∂(2A)
∂A

)2 =
σ2

N−1∑
n=0

(2)2
=

σ2

4N

By using the standard approach:

p (X) = 1

(2πσ2)N/2 exp

(
− 1

2σ2

N−1∑
n=0

(x[n]− 2A)2
)

log p (X) = −N
2
log (2πσ2)− 1

2σ2

N−1∑
n=0

(x[n]− 2A)2

∂ log p(X)
∂A

= 2
σ2

N−1∑
n=0

(x[n]− 2A)

∂2 log p(X)
∂A2 = −4N

σ2

CRLB = σ2

4N

To get efficient estimator, we use the first derivative:

∂ log p(X)
∂A

= 2
σ2

N−1∑
n=0

(x[n]− 2A) = 2
σ2

N−1∑
n=0

x[n] + 2
σ2

N−1∑
n=0

−2A

= 2
σ2

N−1∑
n=0

x[n]− 4AN
σ2 = 4N

σ2

(
1
2N

N−1∑
n=0

x[n]− A

)
Thefore, we get that the efficient estimator is

⌢

A =
1

2N

N−1∑
n=0

x[n]

Let us check it is unbiased:

E
[

⌢

A
]
=

1

2N

N−1∑
n=0

E [x[n]] =
1

2N

N−1∑
n=0

2A =
2AN

2N
= A

Let us check it reaches the CRLB:

Var
[
Â
]
=

1

4N2

N−1∑
n=0

Var [x[n]] =
1

4N2

N−1∑
n=0

σ2 =
σ2N

4N2
=

σ2

4N



7

B. Question 2
Radar measurements typically obey the Rayleigh-distribution

p (Z [i] ;α) =
Z [i]

α2
exp

(
−Z[i]2

2α2

)
where Z[i] > 0. Let us assume that we are given N statistically independent measurements Z[1], Z[2], · · · , Z[N ].
From the Cramer-Rao lower bound for an estimator of α. We know that

E
[
Z[i]2

]
= 2α2

Answer:

p (Z) =

N∏
i=1

Z[i]

α2N exp

−
N∑
i=1

Z[i]2

2α2


log p (Z) =

N∑
i=1

log (Z [i])− 2N log (α)−
N∑
i=1

Z[i]2

2α2

∂ log p(Z)
∂α

= −2N
α

+

N∑
i=1

Z[i]2

α3

∂2 log p(Z)
∂α2 = 2N

α2 − 3

N∑
i=1

Z[i]2

α4

E
[
∂ log p(Z)

∂α2

]
= 2N

α2 − 3

N∑
i=1

E[Z[i]2]

α4 = 2N
α2 − 6α2N

α4 = −4N
α2

CRLB = − 1

E[ ∂ log p(Z)

∂α2 ]
= α2

4N

C. Question 3
If the data X[n], for n = 0, 1, · · · , N − 1 are independent and identically distributed with uniform

distribution U [0, θ], show that the regularity condition does not hold such as:

E

[
∂ log p (X; θ)

∂θ

]
̸= 0, for θ > 0

Hence the CRLB can not be applied to this problem.
Answer:

p (X; θ) =

{
1
θN

0 ≤ X[n] ≤ θ, ∀n
0 otherwise

log p (X; θ) = −N log θ
∂ log p(X;θ)

∂θ
= −N

θ

E
[
∂ log p(X;θ)

∂θ

]
= −N

θ
̸= 0

D. Question 4
The data

x[n] = Arn+4 + w[n]

for n = 0, 1, 2, ...N − 1 are observed, where w[n] is WGN with variance σ2 and r > 0 is known.
1) Write the log-likelihood function for the observed vector X.
2) Derive the CRLB for the parameter A by using the theory of signals in WGN.
3) Derive the MVU estimator for A.
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Answer: (a)

p (X) = 1

(2πσ2)N/2 exp

−
N−1∑
n=0

(x[n]−Arn+4)
2

2σ2


log p (X) = −N

2
log (2πσ2)−

N−1∑
n=0

(x[n]−Arn+4)
2

2σ2

(b)

CRLB =
σ2

N−1∑
n=0

(
∂Arn+4

∂A

)2 =
σ2

N−1∑
n=0

(rn+4)2
=

σ2

N−1∑
n=0

r2(n+4)

Using standard approach we also get the same answer:

log p (X) = −N
2
log (2πσ2)−

N−1∑
n=0

(x[n]−Arn+4)
2

2σ2

∂ log p(X)
∂A

= 1
σ2

N−1∑
n=0

(x[n]− Arn+4)rn+4 = 1
σ2

N−1∑
n=0

x[n]rn+4 − 1
σ2

N−1∑
n=0

Ar2(n+4)

∂2 log p(X)
∂A2 = − 1

σ2

N−1∑
n=0

r2(n+4)

CRLB = σ2

N−1∑
n=0

r2(n+4)

(c)
∂ log p(X)

∂A
= 1

σ2

[
N−1∑
n=0

x[n]rn+4 −
N−1∑
k=0

Ar2(k+4)

]
=

N−1∑
k=0

r2(k+4)

σ2

N−1∑
n=0

x[n]rn+4

N−1∑
k=0

r2(k+4)

− A


Therefore, MVU estimator is

Â =

N−1∑
n=0

x[n]rn+4

N−1∑
k=0

r2(k+4)

III. LINEAR MODELS AND BEST LINEAR UNBIASED ESTIMATORS

A. Question 1
We wish to estimate the amplitudes of exponentials in noise. The observed data are

x [n] =

p∑
i=1

Air
n
i + w[n], n = 0, 1, · · ·N − 1

where w[n] is white Gaussian noise with variance σ2. Find MVU estimator of the amplitudes and also
their covariance. Next, evaluate your results for the case when p = 2, r1 = 1, r2 = −1, and N is even.
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Answer:
θT =

[
A1 · · · Ap

]
H =


1 1 · · · 1
r1 r2 · · · rp
...

... · · · ...
rN−1
1 rN−1

2 · · · rN−1
p


xT =

[
x[0] x[1] · · · x[N − 1

]
θ̂ =

(
HTH

)−1
HTx

Cθ̂ = σ2
(
HTH

)−1

For the second part of the question:

θT =
[
A1 A2

]
H =


1 1
r1 r2
...

...
rN−1
1 rN−1

2

 =


1 1
1 −1
...

...
1 −1


HT =

[
1 1 · · · 1
1 −1 · · · −1

]
HTH =

[
N 0
0 N

]
= NI

θ̂ =
(
HTH

)−1
HTx = 1

N
HTx = 1

N

[
1 1 · · · 1
1 −1 · · · −1

]
x

=


1
N

N−1∑
i=0

x[n]

1
N

N−1∑
i=0

(−1)nx[n]


Cθ̂ = σ2(NI)−1 = σ2

N
I

B. Question 2
We observe two samples of a DC level in correlated Gaussian noise

x[0] = A+ w[0]

x[1] = A+ w[1]

where w = [w[0] w[1]]T is zero mean with covariance matrix.

C = σ2

[
1 ρ
ρ 1

]
The parameter ρ is the correlation coefficient between w[0] and w[1]. Find the MVU estimator of A and
its variance. Does the estimator depend on ρ?

Note:
In this case, it can be described as x = [x[0] x[1]]T where x[n] is not a vector but this is also different

from a DC level in AWGN since the noise w[n] for n = 0, 1 are correlated with the correlation coefficient
ρ.

If the signal S(θ) of x = S(θ) + w is in a linear form such as S(θ) = Hθ + b, we can calculate the
CRLB by using the general linear model equations.

Linear Model:
θ̂ = (HTC−1H)−1HTC−1(x− b)

Cθ̂ = (HTC−1H)−1
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Answer: The MVU estimator is (matrix calculations omitted, can be done by hand or with MATLAB)

Â = (HTC−1H)−1HTC−1x =
1

2
(x[0] + x[1])

which is seen not to depend on ρ.
The variance of the estimator is

Var
(
Â
)
= (HTC−1H)−1 = σ21 + ρ

2

which strongly depends on ρ. When ρ = −1, the variance is zero because the noise terms cancel out.
When ρ = 1, the variance is σ2, which is the same variance as with one sample only (the second sample
does not help at all due to the same noise value, i.e., w[0] = w[1]).

C. Question 3
Write the observation matrix H for the linear model for this model x[n] = θ1+θ2n+θ3n

2, n = 1, 2, 3, 4.
Here θ1, θ2, θ3 are the unknown parameters to be estimated and n is the time index. Write also the θ vector
for the linear model.

Answer: The observation matrix is:

H =


1 1 1
1 2 4
1 3 9
1 4 16


and the θ vector is

θ =

 θ1
θ2
θ3


D. Question 4

The observed samples {x[0], x[1], ..., x[N − 1]} are I.I.D according to the following PDFs:
1) Laplacian

p(x[n];µ) =
1

2
e(−|x[n]−µ|)

2) Gaussian
p(x[n];µ) =

1√
2π

e[−
1
2
(x[n]−µ)2]

Find the BLUE of the mean µ in both cases. What can you say about the MVU estimator for µ?
Answer: Let us collect the observed samples into a vector X:

X =


x[0]
x[1]

...
x[N − 1]


(a) From properties of Laplacian PDFs (or by calculating the mean and variance by integration), we

know that mean of the each x[n] is µ and the variance of each x[n] is 2.
Therefore, we have the model

X = µ1+W

where E[W ] = 0 and E[WW T ] = Var(w[n])I = 2I.
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We can express the BLUE estimator of µ as:

µ̂BLUE =
STC−1X

STC−1S
=

1
2
1TX
1
2
1T1

=
x[0] + x[1] + . . .+ x[N − 1]

10 + 11 + . . .+ 1N−1

=

N−1∑
n=0

x[n]

N

Therefore, the BLUE estimator of µ for Laplacian distributed observations is:

µ̂BLUE =
1

N

N−1∑
n=0

x[n] = X̄

The BLUE estimator is not the MVU estimator since the distribution here is Laplacian, not Gaussian.
(b) For the Gaussian distribution, mean of each sample x[n] is still µ but the variance of each samples

is now 1.
Therefore, we have the model

X = µ1+W

where E[W ] = 0 and E[WW T ] = Var(w[n])I = I.
Therefore, the BLUE estimator of µ for Gaussian distributed observations is:

µ̂BLUE =
STC−1X

STC−1S
=

1TX

1T1
=

x[0] + x[1] + . . .+ x[N − 1]

10 + 11 + . . .+ 1N−1

=

N−1∑
n=0

x[n]

N

This is exactly the same estimator as for the Laplacian distribution. Actually, no matter what constant
values Var(w[n]) is, the BLUE estimator will be exactly the same. For the Gaussian case, the BLUE
estimator is the MVU estimator since the x[n] distribution is Gaussian

IV. MAXIMUM LIKELIHOOD ESTIMATION

A. Question 1
We observed IID samples {x[0], x[1], ..., x[N − 1]} with PDF

p(x[n];λ) = {
λ
2
e−(λ |x[n]|), x > 0

0, x < 0

Find the MLE of the unknown parameter λ.
Answer:

p (X;λ) =
(
λ
2

)N
e
−λ

N−1∑
n=0

|x[n]|

log p (X;λ) = N log
(
λ
2

)
− λ

N−1∑
n=0

|x[n]|

∂ log p(X;λ)
∂λ

= N
λ
−

N−1∑
n=0

|x[n]|

N

λ̂
−

N−1∑
n=0

|x[n]| = 0

λ̂ = N
N−1∑
n=0

|x[n]|
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B. Question 2
The probability mass function for one observation x (a non-negative integer) is

p(x; θ) =
1

θ

(
1− 1

θ

)x

We want to estimate unknown parameter θ (which is greater than 1) based on one observation x. Find
the MLE.

Answer:
p(x; θ) = 1

θ

(
1− 1

θ

)x
log p(x; θ) = − log (θ) + x log

(
1− 1

θ

)
∂ log p(x;θ)

∂θ
= −1

θ
+ x θ

θ−1
1
θ2

= − (θ−1)
θ(θ−1)

+ x 1
θ(θ−1)

= − (θ−1)
θ(θ−1)

+ x 1
θ(θ−1)

= − θ−1−x
θ(θ−1)

− θ̂−1−x

θ̂(θ̂−1)
= 0

θ̂ = x+ 1

C. Question 3
The probability density function of the observed samples is

p(x[n]; θ) =

{
θ exp (−θx[n]) x[n] > 0

0 x[n] < 0

where n = 0, 1, · · · , N − 1. The samples are independent. We want to estimate θ.
1) Find the CRLB.
2) Is there an unbiased estimator that reaches the CRLB?
3) Find the MLE.
Answer: Let us first find the CRLB:

p(X; θ) = θN exp

(
−θ

N−1∑
n=0

x[n]

)
log p(X; θ) = N log (θ)− θ

N−1∑
n=0

x[n]

∂ log p(X;θ)
∂θ

= N
θ
−

N−1∑
n=0

x[n]

∂2 log p(X;θ)
∂θ2

= −N
θ2

CRLB = θ2

N

Then lets check does there exist an efficient estimator. There is, if we can write the derivatitave in this
form:

∂ log p(X; θ)

∂θ
= I (θ)

(
θ̂ − θ

)

∂ log p(X; θ)

∂θ
=

1

θ

(
N − θ

N−1∑
n=0

x[n]

)
=

N−1∑
n=0

x[n]

θ

 N
N−1∑
n=0

x[n]

− θ


But I(θ) cannot be function of x! Therefore, there does not exist an efficient estimator.
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Next, let us find the MLE by setting the first derivate to zero and solving:

∂ log p(X;θ)
∂θ

= N
θ
−

N−1∑
n=0

x[n]

N

θ̂
−

N−1∑
n=0

x[n] = 0

θ̂ = N
N−1∑
n=0

x[n]

D. Question 4
Derive the MLE for unknown parameter θ based on independent measurements x[1], x[2], · · · , x[N ],

which follow the uniform distribution with range (0, θ) [the values range from 0 to θ].
Answer:

p(x[n]; θ) =

{
1
θ

0 ≤ x[n] ≤ θ
0 otherwise

p(X; θ) =

{
1
θN

0 ≤ x[n] ≤ θ, ∀n
0 otherwise

This is the maximized by minimizing θ̂. But there is limit how small we can make θ̂ since

θ ≥ x[n], ∀n
θ ≥ max (X)

Therefore, the MLE is
θ̂ = max (X)
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