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I. PROBABILITY AND STATISTICS

A. Question 1
Calculate expected value µ and variance σ2 of the random variable x which follows the probability

distribution
f (x) =

{
b exp

(
−x

a

)
x ≥ 0

0 otherwise

where a > 0 is known. Determine the constant b first.
Answer: When integrated over the probability density function, the result must be 1. We get that

∞∫
0

b exp
(
−x

a

)
dx = b

∞∫
0

exp
(
−x

a

)
dx = ba

so that b = 1/a. Therefore, the distribution is

f (x) =

{
1
a
exp

(
−x

a

)
x ≥ 0

0 otherwise

The mean is by definition

µ =

∞∫
0

x

a
exp

(
−x

a

)
dx = a

The variance is by definition

σ2 = E [x2]− E[x]2 =
∞∫
0

x2

a
exp

(
−x

a

)
dx− a2

= 2a2 − a2 = a2

B. Question 3
Assume that random variable x has the distribution

f (x) =

{
1
2
exp (x) x < 0

1
2
exp (−x) x ≥ 0

Find mean and variance of x.
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Answer: The mean is obtained with

E [x] =

∞∫
0

x

2
exp (−x)+

0∫
−∞

x

2
exp (x) = 0

and the variance is

Var [x] = E
[
x2
]
− 02 =

∞∫
0

x2

2
exp (−x)+

0∫
−∞

x2

2
exp (x) = 2

C. Question 4
We use estimator

θ̂ =
1

2N

N∑
i=1

(
z[i]2 + 2

)
to estimate unknown parameter θ. In addition we know that E

[
z[i]2

]
= 2 (θ − 1). Prove that E

[
θ̂
]
= θ.

Answer: By the linearity of expectation we get

E
[
θ̂
]
= 1

2N

N∑
i=1

(
E
[
z[i]2

]
+ 2

)
= 1

2N

N∑
i=1

(2 (θ − 1) + 2)

= 1
2N

N∑
i=1

(2θ − 2 + 2) = 1
2N

N∑
i=1

(2θ) =2θN
2N

= θ

D. Question 5
A store has on average E[X] = 100 customers per day with variance Var[X] = 225. By using

Chebyshev’s inequality find upper bound on the number of customers X being more than 120 or less
than 80.

Answer: The Chebyshev’s inequality is

P (|X − E [X]| ≥ b) ≤ Var [X]

b2

In this case, direct application yields,

P (|X − 100| ≥ 20) ≤ 225

400
=

9

16

E. Question 6
Assume that

X ∼ Geometric (p)

where Geometric distribution refers to the probability distribution of the number X of Bernoulli trials
necessary to get one success (1, 2, 3, · · · ). Use Markov inequality to find upper bound for

P (X ≥ a)

for a positive integer a. Also find the exact value for P (X ≥ a). The probability mass function (PMF)
for Geometric distribution is

P (X = k) = (1− p)k−1p

for k = 1, 2, 3, · · · .
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Answer: The mean of geometric distribution is

E [X] =
1

p

The generic Markov inequality for any non-negative random variable X is

P (X ≥ a) ≤ E [X]

a

where a > 0. When applied to geometric distribution, we directly get that

P (X ≥ a) ≤ 1

pa

To get the exact value we use symbolic summation (symsym) in MATLAB:

syms p k a positive
assume(a,{'positive','integer'});
assume(k,{'positive','integer'});
symsum((1-p)ˆ(k-1)*p,k,a,Inf)

and get that
P (X ≥ a) = (1− p)a−1

F. Question 7
Assume that X is continuous random variable with probability density function (PDF)

f (x) =

{
x2 + 2

3
0 ≤ x ≤ 1

0 otherwise

• Find E [Xn], for n = 1, 2, 3, · · ·
• Find variance of X
Answer: The raw moments are

E [Xn] =

1∫
0

xn

(
x2 +

2

3

)
dx =

1∫
0

xn+2dx+
2

3

1∫
0

xndx =
1

n+ 3
+

(
2

3

)
1

n+ 1

for n = 1, 2, · · · .
The variance can be obtained with the raw moments:

V ar [X] = E [X2]− (E [X])2 = 1
5
+ 2

9
−
(
1
4
+ 2

6

)2
= 1

5
+ 2

9
−

(
1
4
+ 2

6

)2
= 59

720

G. Question 8
Assume that X is continuous random variable with probability density function (PDF)

f (x) =

{
5
32
x4 0 ≤ x ≤ 2
0 otherwise

Now let Y = X2.
• Find Cumulative Distribution Function (CDF) of Y
• Find the PDF of Y
• Find E [Y ]
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Answer: When 0 ≤ y ≤ 4, we get

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P
(
0 ≤ X ≤ √

y
)

=

√
y∫

0

5
32
x4dx = 1

32
y5/2

The complete answer for all cases is:

FY (y) =

 0 y < 0
1
32
y5/2 0 ≤ y ≤ 4
1 y > 4

Now the PDF is obtained as the derivative of the CDF

fY (y) =

 0 y < 0
5
64
y3/2 0 ≤ y ≤ 4
0 y > 4

Finally the mean is

E [Y ] =
5

64

4∫
0

y · y3/2dy =
5

64

4∫
0

y5/2dy =
5

64

2

7
47/2 =

5

64

2

7
128 =

20

7
≈ 2.9

H. Question 9
Assume that Y is random variable and that its probability density function (PDF) is

fY (y) =

 1 + y −1 ≤ y ≤ 0
y 0 < y ≤ 1
0 otherwise

• Find P
(
|Y | < 1

2

)
• Find P

(
Y > 0|Y < 1

2

)
• Find E [Y ]

Answer:

P

(
|Y | < 1

2

)
=

1/2∫
0

ydy +

0∫
−1/2

(1 + y) dy =
1

8
+

3

8
=

1

2

By the definition of conditional probability:

P

(
Y > 0|Y <

1

2

)
=

P
(
0 < Y < 1

2

)
P
(
Y < 1

2

) =

1/2∫
0

ydy

1
2
+

1/2∫
0

ydy

=
1/8

5/8
=

1

5

The expected value is

E [Y ] =

1∫
0

y2dy +

0∫
−1

y (1 + y) dy =

1∫
−1

y2dy +

0∫
−1

ydy =
2

3
− 1

2
=

1

6
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I. Question 10
Assume that X is random variable that is uniformly distributed between 0 and 1. Let Y = exp(−X).
• What is the cumulative distribution function of Y ?
• What is the probability density function of Y ?
• Find E [Y ].

Remember to handle all possible values as input to PDF and CDF.
Answer: First, we notice that range of possible values for Y is [1/e, 1]. The CDF is FY (y) = P (Y ≤ y).

We can easily see that when y > 1, the CDF is one and when y < 1/e, CDF is zero (since those values
are impossible). Now let us focus on the case where y is in the range [1/e, 1]:

FY (y) = P (Y ≤ y) = P (exp (−X) ≤ y) = P (−X ≤ ln (y)) = P (X ≥ − ln (y))
= 1− P (X < − ln (y)) = 1− (− ln (y)) = 1 + ln (y)

where we have used the fact that − ln(y) is between 0 and 1. Therefore, the overall CDF is:

FY (y) =

 0 y < 1
e

1 + ln (y) 1
e
≤ y ≤ 1

1 y > 1

The PDF is simply derivative of the CDF:

fY (y) =


0 y < 1

e
1
y

1
e
≤ y ≤ 1

0 y > 1

And the expected value is

E [Y ] =

1∫
1/e

y
1

y
dy =

1∫
1/e

1dy = 1− 1

e

J. Question 11
John went fishing. He knows that it takes 1 hour to get a fish (on average).
• Find upper bound for probability that it takes more than 4 hours to catch a fish.
• John has only two hours available for fishing. Find upper bound on the probability that he will not

catch fish.
Answer: We directly use the Markov inequality. Let X denote the time it takes to catch a fish. Clearly

X is non-negative. Now,

P (X ≥ 4) ≤ E [X]

4
=

1

4

For the second question,
P (nofish) = P (X > 2) = P (X ≥ 2)

and again using the Markov inequality we get

P (X ≥ 2) ≤ E [X]

2
=

1

2
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II. MULTIVARIATE DISTRIBUTIONS

A. Question 1
Random variables x and y have the probability distribution

f (x, y) =

{
8xy 0 ≤ x ≤ 1, 0 ≤ y ≤ x
0 otherwise

• Find marginal distribution of x
• Find marginal distribution of y
• Find conditional distribution of x
• Find conditional distribution of y
Answer: The marginal distribution of x is

f (x) =

x∫
0

8xydy =8x

x∫
0

ydy = 8x
x2

2
= 4x3

The marginal distribution of y is obtained by noticing that for given y, the valid range for x is between
y and 1. Then we simply integrate and get

f (y) =

1∫
y

8xydx = 8y

1∫
y

xdx = 8y

(
1

2
− y2

2

)
= 4y

(
1− y2

)
To find the conditional distribution of x we use

fx|y (x|y) =
f (x, y)

f (y)
=

8xy

4y (1− y2)
=

2x

1− y2

where 0 ≤ y ≤ 1, y ≤ x ≤ 1. Similarly, the conditional distribution of y is

fy|x (y|x) =
f (x, y)

f (x)
=

8xy

4x3
=

2y

x2

when 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

B. Question 2
Random variables x and y have the probability distribution

f (x, y) =

{
3
2

x2 ≤ y ≤ 1, 0 < x < 1
0 otherwise

Find conditional distribution of y.
Answer: First, we need to get marginal distribution of x. It is

f (x) =

1∫
x2

3

2
dy =

3

2

(
1− x2

)
where 0 < x < 1. Now directly the conditional distribution is

fy|x (y|x) =
f (x, y)

f (x)
=

1

1− x2

where 0 < x < 1, x2 ≤ y ≤ 1.
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C. Question 3
Let

x(n) = sin(ω0n+ ϕ0),

be a real-valued discrete-time random process so that n is an integer. The ϕ0 is a random variable,
uniformly distributed in the range [-π, π] and all samples share the same ϕ0. ω0 is constant.

Show that x(n) is zero mean and show that the autocovariance sequence of x(n) is

rx(k) =
1

2
cos(ω0k).

Answer: First, we show that x(n) has mean zero:

E [x(n)] =
1

2π

π∫
−π

sin(ω0n+ ϕ0)dϕ0 = 0

To find autocovariance we first note the trigonometric identity

sin (θ) sin (φ) =
cos (θ − φ)− cos (θ + φ)

2
Now we find autocovariance or equivalently autocorrelation (since mean is zero) with

rx (k) = E [x(n+ k)x (n)] = E [sin(ω0 (n+ k) + ϕ0) sin(ω0n+ ϕ0)]
= 1

2
E [cos (ω0k)]− 1

2
E [cos (ω0 (2n+ k) + 2ϕ0)]

= 1
2
cos (ω0k)− 1

2
E [cos (ω0 (2n+ k) + 2ϕ0)]

= 1
2
cos (ω0k)− 1

4π

π∫
−π

cos (ω0 (2n+ k) + 2ϕ0) dϕ0

= 1
2
cos (ω0k)

which does not depend on n.

D. Question 4
Let X ∼ Binomial(n, p) where n is the number of trials and p is the success probability. Find E[X]

and Var[X]. Hint: decompose the binomial random variable into sum of independent Bernoulli random
variables.

Answer:
X = X1 +X2 + · · ·+Xn

where each Xi is a Bernoulli random variable with success probability p. Now, to get mean we use the
linearity of expectation (would work even if the variables would not be independent!)

E [X] = E [X1] + E [X2] + · · ·+ E [Xn] = nE [Xi]

and since the Xis are independent we can also sum the variances (note that generally we cannot do this!):

V ar [X] = V ar [X1] + V ar [X2] + · · ·+ V ar [Xn] = nV ar [Xi]

Now all that is left is to find the mean and variance for one Bernoulli distributed random variable. Since
each Bernoulli random variable is 1 with probability p,

E [Xi] = p

and the mean of the Binomial random variable is

E [X] = np

The variance of each Bernoulli random variable is

V ar [Xi] = E
[
X2

i

]
− E[Xi]

2 = p− p2 = p (1− p)

and so the variance of the Binomial random variable is

V ar [X] = np (1− p)
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E. Question 5
Assume that random variables x and y have joint probability density function (PDF)

fxy (x, y) =

{
x2 + 1

3
y −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

Find the conditional PDF of x given y. Also determine if x and y are independent.
Answer: First we need to find marginal PDF of y

fy (y) =

1∫
−1

(
x2 +

1

3
y

)
dx =

2

3
(y + 1)

Now, we directly get that

fx|y (x|y) =
fxy (x, y)

fy (y)
=

x2 + 1
3
y

2
3
(y + 1)

where −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 (otherwise conditional PDF is zero).
To check for independence let us find the marginal PDF of x

fx (x) =

1∫
0

(
x2 +

1

3
y

)
dy = x2 +

1

6

Now let us check if the joint PDF is product of the marginal PDFs

fx (x) fy (y) =
y

9
+

2x2y

3
+

2x2

3
+

1

9
̸= fxy (x, y)

we can see that x and y are not independent.

F. Question 6
Assume two random variables x and y that have joint probability density function (PDF)

fxy (x, y) =

{
1
2
(3x+ y) 0 ≤ x, y ≤ 1

0 otherwise

Define random vector
U =

[
X
Y

]
Find the mean and covariance matrix of U.

Answer: First, let us find the marginal PDFs

fx (x) =


1∫
0

1
2
(3x+ y) dy = 3x

2
+ 1

4
0 ≤ x ≤ 1

0 otherwise

and

fy (y) =


1∫
0

1
2
(3x+ y) dx = y

2
+ 3

4
0 ≤ y ≤ 1

0 otherwise

Now, the mean vector is

E [U] =


1∫
0

xfx (x) dx

1∫
0

yfy (y) dy

 =

[
5
8
13
24

]
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The covariance matrix is
C =

[
Var (X) Cov (X, Y )

Cov (Y,X) Var (Y )

]
where

Cov (X, Y ) = Cov (Y,X) = E [XY ]− E [X]E [Y ]

We find that

E
[
X2

]
=

1∫
0

x2fx (x) dx =
11

24

and

E
[
Y 2

]
=

1∫
0

y2fy (y) dy =
3

8

Therefore, the variances are
Var (X) = E

[
X2

]
− E[X]2 =

13

192

and
Var (Y ) = E

[
Y 2

]
− E[Y ]2 =

47

576

The expected value of XY is

E [XY ] =

1∫
0

1∫
0

xy

2
(3x+ y) dxdy =

1

3

Therefore, the covariance is

Cov (X, Y ) = E [XY ]− E [X]E [Y ] = − 1

192

Finally, we get the covariance matrix:

C =

[
13
192

− 1
192

− 1
192

47
576

]
G. Question 7

Assume that X1 and X2 are random variables with joint probability density function (PDF)

f (x1, x2) = exp (−x1 − x2) , 0 < x1 < ∞, 0 < x2 < ∞

Let us consider transformation of random variables:

Y1 = X1 −X2

and
Y2 = X1 +X2

Find the joint PDF of Y1 and Y2.
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Answer: We immediately notice that

X1 =
Y1 + Y2

2

and
X2 =

Y2 − Y1

2

Now, we know from the theory of transformation of random variables

f (y1, y2) = exp

(
−
(
Y1 + Y2

2

)
−
(
Y2 − Y1

2

))
|J | = exp (−Y2) |J |

where the Jacobian is

J = det

[ ∂X1

∂Y1

∂X1

∂Y2
∂X2

∂Y1

∂X2

∂Y2

]
= det

[
1
2

1
2

−1
2

1
2

]
=

1

2

Finally, we get

f (y1, y2) =
exp (−y2)

2
, 0 < y1 + y2 < ∞, 0 < y2 − y1 < ∞

If we let y2 vary from zero to infinity, we get the limits

f (y1, y2) =
exp (−y2)

2
, 0 < y2 < ∞,−y2 < y1 < y2

Let us verify the limits by checking that the PDF integrates to one:

syms y1 y2 real
int(int( exp(-y2)/2,y1,-y2,y2),y2,0,Inf)
ans =
1

III. LINEAR ALGEBRA

A. Question 1
Assume that matrix H

H =


1 1
1 −1
1 1
1 −1


and vector x

x =


1
2
3
4


Calculate by hand

θ̂ =
(
HTH

)−1
HTx
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Answer:

HT =

[
1 1 1 1
1 −1 1 −1

]

HTH =

[
1 1 1 1
1 −1 1 −1

]
1 1
1 −1
1 1
1 −1

 =

[
4 0
0 4

]
= 4I

(
HTH

)−1
= 1

4
I

HTx =

[
1 1 1 1
1 −1 1 −1

]
1
2
3
4

 =

[
10
−2

]

θ̂ =
(
HTH

)−1
HTx = 1

4

[
10
−2

]
=

[
2.5
−0.5

]
B. Question 2

Assume that received samples x[n] = θ1 + θ2n + θ3n
2 + w[n], n = 1, 2, 3, 4. Here θ1, θ2, θ3 are the

unknown parameters to be estimated, w[n] is white Gaussian noise and n is the time index. Let us define
θ as a vector containing the unknown parameters

θ =

 θ1
θ2
θ3


and let us collect the received samples to a vector

x =


x[1]
x[2]
x[3]
x[4]


Find observation matrix H and vector w such that x = Hθ +w.

Answer: The observation matrix is:

H =


1 1 1
1 2 4
1 3 9
1 4 16


and

w =


w[1]
w[2]
w[3]
w[4]


C. Question 3

Assume that received samples x[n] = θ1+θ2n+θ3 cos(n), n = 1, 2, 3, 4. Here θ1, θ2, θ3 are the unknown
parameters to be estimated and n is the time index. Let us define θ as a vector containing the unknown
parameters

θ =

 θ1
θ2
θ3


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and let us collect the received samples to a vector

x =


x[1]
x[2]
x[3]
x[4]


Find observation matrix H such that x = Hθ.

Answer: The observation matrix is:

H =


1 1 cos(1)
1 2 cos(2)
1 3 cos(3)
1 4 cos(4)


D. Question 4

Assume that the observed data (collected in a vector x) follows the Gaussian distribution where both
mean and covariance can depend on the unknown parameters (collected in a vector θ)

x ∼ N (µ (θ) ,C (θ))

Let us assume that there are p unknown parameters. We know that for this kind of problem the p × p
Fisher Information matrix is given by:

[I (θ)]ij =

[
∂µ (θ)

∂θi

]T
C−1 (θ)

[
∂µ (θ)

∂θj

]
+

1

2
tr

[
C−1 (θ)

∂C (θ)

∂θi
C−1 (θ)

∂C (θ)

∂θj

]
where tr is the matrix trace. Now assume that we observed data

x[n] = w[n], n = 0, 1, · · · , N − 1

where w[n] is white Gaussian noise with unknown variance θ = σ2. Find the Fisher Information matrix
for this problem.

Answer: We notice that
x ∼ N (0,C (θ))

where
C (θ) = θI

Since mean is always zero (no matter what the unknown parameters are), the first term of the Fisher
Information matrix is zero and can be ignored. Also, since there is only one unknown parameter the
Fisher Information matrix is a scalar which is:

I (θ) =
1

2
tr

[
1

θ
I
∂θI

∂θ

1

θ
I
∂θI

∂θ

]
=

1

2
tr

[
1

θ2
I

]
=

N

2θ2
=

N

2σ4
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E. Question 5
We know that when

x ∼ N (µ (θ) ,C (θ))

the Fisher Information matrix is given by:

[I (θ)]ij =

[
∂µ (θ)

∂θi

]T
C−1 (θ)

[
∂µ (θ)

∂θj

]
+

1

2
tr

[
C−1 (θ)

∂C (θ)

∂θi
C−1 (θ)

∂C (θ)

∂θj

]
where tr is the matrix trace. Now assume that observed data vector of size 2 × 1 follows the Gaussian
distribution so that

x ∼ N (0,C (ρ))

where ρ is the unknown parameters and the covariance matrix is

C (ρ) =

[
1 ρ
ρ 1

]
Find the Fisher Information matrix for this problem.

Answer: We know that
C−1 (ρ) =

1

1− ρ2

[
1 −ρ
−ρ 1

]
The mean does not depend on the unknown parameter so the first term of the Fisher Information matrix

can be ignored. Also, since there is only one unknown parameter θ = ρ the second term can be expressed
in terms of squaring:

I (θ) = 1
2
tr

[(
C−1 (θ) ∂C(θ)

∂θ

)2
]
= 1

2
tr

[(
1

1−ρ2

[
1 −ρ
−ρ 1

] [
0 1
1 0

])2
]

= 1
2
tr

[(
1

1−ρ2

[
−ρ 1
1 −ρ

])2
]
= 1

2
tr

[(
1

(1−ρ2)2

[
ρ2 + 1 −2ρ
−2ρ ρ2 + 1

])]
=

2(1+ρ2)
2(1−ρ2)2

= 1+ρ2

(1−ρ2)2

F. Question 6
Assume that N ×N covariance matrix is

C
(
σ2
A

)
= σ2

A11
T + σ2I

where
1 =

[
1 1 · · · 1

]T
Find inverse of the covariance matrix using Woodbury’s identity:(

A+ uuT
)−1

=A−1−A−1uuTA−1

1+uTA−1u
Answer: We notice that

C−1
(
σ2
A

)
=

(
σ2I+ σ2

A11
T
)−1

=
(
A+ uuT

)−1

where
A = σ2I
u = σA1

Using the Woodbury’s identity we get

C−1 (σ2
A) =

1
σ2 I−

1
σ4 uu

T

1+ 1
σ2 u

Tu
= 1

σ2 I−
σ2
A

σ4 11T

1+
σ2
A

σ2 1T 1
= 1

σ2 I−
σ2
A

σ4 11T

1+
Nσ2

A
σ2

= 1
σ2 I−

σ2
A11T

σ4+Nσ2σ2
A
= 1

σ2

(
I− σ2

A

σ2+Nσ2
A
11T

)
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G. Question 7
We want to find

θ̂ =
sTC−1x

sTC−1s

where
s =

[
s[0] s[1] · · · s[N − 1]

]T
and

x =
[
x[0] x[1] · · · x[N − 1]

]T
What happens if s is eigenvector of the N ×N covariance matrix C? Notice that eigenvectors of matrix
and its inverse are the same (and the eigenvalues are inverse of each other). Also notice that covariance
matrix is symmetric.

Answer: We know that
Cs = λs

where λ is the corresponding eigenvalue. Therefore

C−1s =
1

λ
s

By noticing that transpose of a scalar is the original value we get that

θ̂ =
sTC−1x

1
λ
sT s

=

(
sTC−1x

)T
1
λ
sT s

=
xTC−1s

1
λ
sT s

=
1
λ
xT s

1
λ
sT s

=
xT s

sT s
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