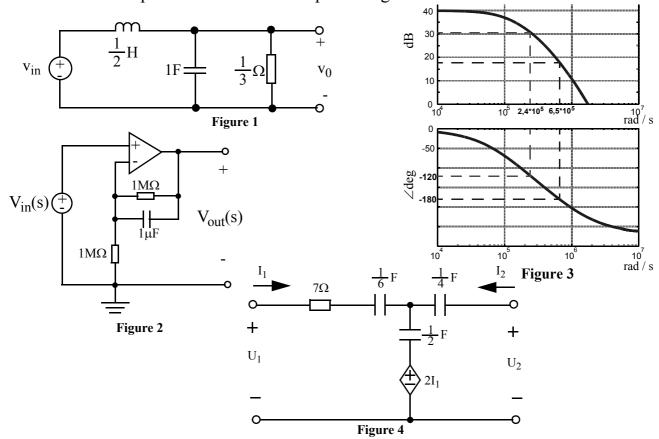


DEPT. OF ELECTRICAL AND INFORMATION ENGINEERING $11.01.2008 \label{eq:engineering}$


Circuit Theory II (Graphical calculator and an A4-sized crib sheet are allowed)

- 1. From the circuit in fig. 1, calculate voltage $v_0(t)$. Voltage $v_{in}(t)$ is a unit impulse $\delta(t)$, $i_L(0)=1A$ and $u_C(0)=1V$. The latter two are the initial current and the initial voltage for inductor and capacitor, respectively.
- 2. The opamp in fig. 2 is assumed ideal. Scale the components of the circuit in fig. 2 so that all the corner frequencies in the circuit's frequency response will increase four-fold. It is also required, that the capacitor is scaled to value 100nF. After scaling, calculate the voltage transfer function $V_{out}(s)/V_{in}(s)$ and draw the corresponding pole-zero map.
- 3. A frequency response of a voltage amplifier a(s) is shown in fig. 3. The amplifier has a DC-gain of 40dB and it has three negative poles. The amplifier is used in a negative feedback system, whose feedback has a constant gain f.

The loop gain is therefore: $T(s) = a(s) \cdot f$, f > 0.

Estimate with a brief explanation, what is the value of f, where

- a) the feedback system is unstable and
- b) phase margin is 60°.
- c) What is the gain margin, when the phase margin is 60° ?
- 4. Calculate the z-parameters for the two-port in fig. 4.

DEPT. OF ELECTRICAL AND INFORMATION ENGINEERING $11.01.2008 \label{eq:engineering}$

Circuit Theory II (Graphical calculator and an A4-sized crib sheet are allowed)

Table 1: Common Laplace-transform pairs

	x(t)	X(s)
impulse	δ(t)	1
unit step	1	1 / s
ramp	t	$1/s^2$
n th power	t ⁿ	n! / s ⁿ⁺¹
a th power (a>0)	$t^{a-1}/\Gamma(a)$	1 / s ^a
	$1/\sqrt{(\pi t)}$	1 / √s
exp. function	e ^{-at}	1 / (s+a)
	1 - e ^{-at}	a / (s(s+a))
	t ⁿ e ^{-at}	n! / (s+a) ⁿ⁺¹
sin	sin(ωt)	$\omega / (s^2 + \omega^2)$
cos	cos(ωt)	$s/(s^2+\omega^2)$
sinh	sinh(at)	$a/(s^2-a^2)$
cosh	cosh(at)	s / (s ² -a ²)
Linearity	ax(t) + by(t)	aX(s) + bY(s)
translation in freq	e ^{-at} x(t)	X(s+a)
translation in time	x(t-T)	e ^{-sT} X(s)
first time derivative	dx(t) / dt	sX - x(0)
n th time derivative	$d^n x(t) / dt^n$	$s^{n}X(s) - s^{n-1}x(0)$ $- s^{n-2}x^{(1)}(0) \dots - x^{(n-1)}(0)$
Time integral	$\int_{0}^{t} x(t)dt$	$\frac{X(s)}{s} + \frac{1}{s} \cdot \int_{-\infty}^{0} x(t)dt$
convolution	$\int_{O}^{t} x(\tau)g(t-\tau)d\tau$	G(s)X(s)
n th freq derivative	$(-t)^n x(t)$	$d^n X(s) / ds^n$