Introduction to Optimization

Old exams, solutions

1.

$$
x^{(0)}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}, x^{(1)}=\left[\begin{array}{ll}
-1 / 3 & 1 / 2
\end{array}\right]^{\top} \text { and } x^{(2)}=[-0.3561,0.5]^{\top} .
$$

2. The function is quadratic since

$$
f(x)=\frac{1}{2} \boldsymbol{x}^{\top} A \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}, \text { where } A=\left[\begin{array}{cc}
4 & -2 \\
-2 & 8
\end{array}\right] \text { and } \boldsymbol{b}^{\top}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

Starting the conjugate gradient method from the initial point $x^{(0)}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$, we obtain $r^{(0)}=d_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, $\beta_{0}=0, \alpha_{0}=5 / 28$ and

$$
x^{(1)}=\left[\begin{array}{l}
5 / 28 \\
5 / 14
\end{array}\right] \text { and } r^{(1)}=\left[\begin{array}{c}
1 \\
-1 / 2
\end{array}\right] .
$$

Next, $\beta_{1}=1 / 4, d_{1}=\left[\begin{array}{c}5 / 4 \\ 0\end{array}\right], \alpha_{1}=1 / 5$ and

$$
x^{(2)}=\left[\begin{array}{c}
3 / 7 \\
5 / 14
\end{array}\right] \text { and } r^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Thus, $x^{(2)}$ is the optimal solution and the minimum value is $f\left(x^{(2)}\right)=-4 / 7$.
3.

$$
x_{\min }=[9 / 7,-8 / 7]^{\top}
$$

4. For the constrained problem

$$
\min _{\substack{x_{1}-x_{2}-2 \leq 0}} x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}-2 x_{1}
$$

the Lagrangian is

$$
L(x, \lambda)=x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}-2 x_{1}+\lambda_{1}\left(x_{1}-x_{2}-2\right)+\lambda_{2}\left(x_{1}-2\right) .
$$

The KKT-conditions are:

$$
\begin{aligned}
& 2 x_{1}+x_{2}-2+\lambda_{1}+\lambda_{2}=0, \\
& x_{1}+4 x_{2}-\lambda_{1}=0, \\
& \lambda_{1}\left(x_{1}-x_{2}-2\right)=0, \\
& \lambda_{2}\left(x_{1}-2\right)=0, \\
& \lambda_{1}, \lambda_{2} \geq 0 .
\end{aligned}
$$

When $\lambda_{1}=\lambda_{2}=0, x=(8 / 7,-2 / 7) \in U$. This satisfies the conditions.
When $\lambda_{1}=0, \lambda_{2}>0$, we derive $\lambda_{2}<0$, which is not possible.
When $\lambda_{1}>0, \lambda_{2}=0, \lambda_{1}<0$ and the conditions are not satisfied.
When $\lambda_{1}>0, \lambda_{2}>0, \lambda_{2}<0$, which contradicts with the conditions.
The only point that satisfies the conditions is $[x, \lambda]=[8 / 7,-2 / 7,0,0]$.
5. The point $[x, u]=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{\top}$.

6 . For the primal problem

$$
\min _{2 x_{1}+x_{2} \leq-2} 2 x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-x_{2}
$$

the Lagrangian is

$$
L(x, u)=2 x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-x_{2}+u\left(2 x_{1}+x_{2}+2\right) .
$$

To find the dual function, we solve $\nabla_{x} L=0$, that is,

$$
\nabla_{x} L(x, u)=0 \Leftrightarrow\left[\begin{array}{c}
4 x_{1}-x_{2}+2 u \\
2 x_{2}-x_{1}-1+u
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
x_{1}=-\frac{5}{7} u+\frac{1}{7} \\
x_{2}=-\frac{6}{7} u+\frac{4}{7}
\end{array}\right.
$$

Thus, the dual function is

$$
G(u)=L\left(x_{u}, u\right)=L\left(-\frac{5}{7} u+\frac{1}{7},-\frac{6}{7} u+\frac{4}{7}, u\right)=-\frac{8}{7} u^{2}+\frac{20}{7} u-\frac{2}{7}
$$

and the corresponding dual problem is

$$
\max _{u \geq 0} G(u)
$$

7. First $x_{1}=\frac{1}{7}(2-5 u)$ and $x_{2}=\frac{1}{7}(1-6 u)$. Substituting these to Lagrangian the dual function is found: $G(u)=-\frac{8}{7} u^{2}+\frac{12}{7} u-\frac{1}{7}$. The dual problem is

$$
\max _{u \geq 0} G(u) .
$$

The maximum is found at $u_{\max }=\frac{3}{4}$. Then $x_{1}=-\frac{1}{4}$ and $x_{2}=-\frac{1}{2}$.
8. In the constrained optimization problem

$$
\min _{-x_{1}+2 x_{2}-2 \leq 0} x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{2}
$$

the objective function is $f=\frac{1}{2} \boldsymbol{x}^{\top} A \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$, where $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and $b^{\top}=\left[\begin{array}{lll}0 & 3\end{array}\right]$. The constraint set is $U=\{x: C \boldsymbol{x}-d\}$, where $C=\left[\begin{array}{ll}-1 & 2\end{array}\right]$ and $d=2$. The initial dual variable $\lambda^{(0)}=1$ and the step size $\rho=\frac{1}{7}$. Then

$$
x^{(0)}=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right], \lambda^{(1)}=\frac{1}{6} 21, x^{(1)}=\left[\begin{array}{c}
1 / 63 \\
46 / 63
\end{array}\right], \lambda^{(2)}=\frac{4}{3} 63, x^{(2)}=\left[\begin{array}{c}
-17 / 189 \\
163 / 189
\end{array}\right] .
$$

