Introduction to Optimization

Some tasks from the old exams

1. Using the Newton method find the approximation to the minimum of the unconstrained optimization probem

$$
\min _{x \in \mathbb{R}^{2}} x_{1}^{2}+x_{2}^{2}+\mathrm{e}^{x_{1}}-x_{2} .
$$

Use $x^{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ as the starting point for your iterations. Compute two iterations.
2. Solve the quadratic optimization problem

$$
\min _{x \in \mathbb{R}^{2}} 2 x_{1}^{2}-2 x_{1} x_{2}+4 x_{2}^{2}-x_{1}-2 x_{2}
$$

using the conjugate gradient method with the initial guess $x^{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$.
3. Solve the quadratic optimization problem

$$
\min _{x \in \mathbb{R}^{2}} 2 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-4 x_{1}+x_{2}
$$

using the conjugate gradient method with the initial guess $x^{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$.
4. Find all the points that satisfy the Karush-Kuhn-Tucker conditions for the constrained optimization problem

$$
\min _{\substack{x_{1}-x_{2}-2 \leq 0}} x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}-2 x_{1}
$$

5. Find all the points that satisfy the Karush-Kuhn-Tucker conditions for the constrained optimization problem

$$
\begin{aligned}
& \min _{x_{1}-x_{2}^{2}+1 \geq 0} x_{1}-2 x_{2} \\
& x_{2} \geq 0 .
\end{aligned}
$$

6. Find the dual function and the dual problem of the constrained optimization problem:

$$
\min _{2 x_{1}+x_{2} \leq-2} 2 x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-x_{2}
$$

7. Find the dual function and solve the dual problem of the constrained optimization problem:

$$
\min _{2 x_{1}+x_{2} \leq-1} 2 x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-x_{1} .
$$

8. Using the Uzawa's algorithm find the approximation to the minimum of the constrained optimization probem

$$
\min _{-x_{1}+2 x_{2}-2 \leq 0} x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{2}
$$

Compute two iterations. Take step size $\rho=\frac{1}{7}$.

