Introduction to Optimization

Some tasks from the old exams

1. Using the Newton method find the approximation to the minimum of the unconstrained optimization probem

$$\min_{x \in \mathbb{R}^2} x_1^2 + x_2^2 + e^{x_1} - x_2.$$

Use $x^0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^\top$ as the starting point for your iterations. Compute two iterations.

2. Solve the quadratic optimization problem

$$\min_{x \in \mathbb{R}^2} 2x_1^2 - 2x_1x_2 + 4x_2^2 - x_1 - 2x_2$$

using the conjugate gradient method with the initial guess $x^0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$.

3. Solve the quadratic optimization problem

$$\min_{x \in \mathbb{R}^2} 2x_1^2 + x_1 x_2 + x_2^2 - 4x_1 + x_2$$

using the conjugate gradient method with the initial guess $x^0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^\top$.

4. Find all the points that satisfy the Karush-Kuhn-Tucker conditions for the constrained optimization problem

$$\min_{\substack{x_1 - x_2 - 2 \le 0 \\ x_1 \le 2.}} x_1^2 + x_1 x_2 + 2x_2^2 - 2x_1$$

5. Find all the points that satisfy the Karush-Kuhn-Tucker conditions for the constrained optimization problem

$$\min_{\substack{x_1 - x_2^2 + 1 \ge 0 \\ x_2 \ge 0.}} x_1 - 2x_2$$

6. Find the dual function and the dual problem of the constrained optimization problem:

$$\min_{2x_1 + x_2 \le -2} 2x_1^2 + x_2^2 - x_1 x_2 - x_2.$$

7. Find the dual function and solve the dual problem of the constrained optimization problem:

$$\min_{2x_1 + x_2 \le -1} 2x_1^2 + x_2^2 - x_1 x_2 - x_1.$$

8. Using the Uzawa's algorithm find the approximation to the minimum of the constrained optimization probem

$$\min_{-x_1+2x_2-2\leq 0} x_1^2 + x_2^2 + x_1x_2 - 3x_2.$$

Compute two iterations. Take step size $\rho = \frac{1}{7}$.