Introduction to Optimization

Fall 2015, Homework 3

5. Let $X=\left(x_{i j}\right), i, j=1, \ldots, n$ be a symmetric and positive definite matrix. We minimize

$$
f(X)=\log \left(\operatorname{det}\left(X^{-1}\right)\right)
$$

subject to

$$
\boldsymbol{a}_{i}^{\top} X \boldsymbol{a}_{i} \leq 1, i=1, \ldots, m
$$

where the points $\boldsymbol{a}_{i}, i=1, \ldots, m$ span the space \mathbb{R}^{n}.
To find the dual function, we need to find the minimum of the Lagrangian

$$
L(x, u)=\log \left(\operatorname{det}\left(X^{-1}\right)\right)+\sum_{i=1}^{m} u_{i}\left(\boldsymbol{a}_{i}^{\top} X \boldsymbol{a}_{i}-1\right) .
$$

Since $\operatorname{det}\left(X^{-1}\right)=\operatorname{det}(X)^{-1}$, we obtain

$$
\log \left(\operatorname{det}\left(X^{-1}\right)\right)=\log \left(\operatorname{det}(X)^{-1}\right)=-\log (\operatorname{det} X)
$$

Moreover,

$$
\begin{aligned}
\frac{\partial}{\partial x_{i j}} \log \left(\operatorname{det}\left(X^{-1}\right)\right) & =-\frac{\partial}{\partial x_{i j}} \log (\operatorname{det}(X))=-\frac{1}{\operatorname{det}(X)} \frac{\partial}{\partial x_{i j}} \operatorname{det}(X) \\
& =-\frac{1}{\operatorname{det}(X)} \operatorname{adj}(X)_{j i}=-\left(X^{-1}\right)_{j i}
\end{aligned}
$$

and now

$$
\begin{aligned}
\nabla_{x} L(x, u)=0 & \Leftrightarrow\left(X^{-1}\right)_{j i}^{\top}=\sum_{k=1}^{m} u_{k} a_{k i} a_{k j} \\
& \Leftrightarrow\left(X^{-1}\right)_{j i}=u^{\top}\left[\begin{array}{c}
a_{1 i} a_{1 j} \\
a_{2 i} a_{2 j} \\
\vdots \\
a_{m i} a_{m j}
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\left(X^{-1}\right)^{\top}=A U A^{\top}
$$

where $A=\left[\begin{array}{llll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{m}\end{array}\right]$ and $U=\left[\begin{array}{ccccc}u_{1} & 0 & 0 & \ldots & 0 \\ 0 & u_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & u_{m}\end{array}\right]$.
Hence,

$$
X=\left(A^{-1}\right)^{\top} U^{-1} A^{-1}
$$

Thus, the dual function is

$$
G(u)=\log \left(\operatorname{det}\left(A U A^{\top}\right)\right)+\sum_{i=1}^{m} u_{i}\left(\boldsymbol{a}_{i}^{\top} X \boldsymbol{a}_{i}-1\right)
$$

where $X=\left(A^{-1}\right)^{\top} U^{-1} A^{-1}$ and $u \geq 0$.
The dual problem is

$$
\max _{u \geq 0} G(u) .
$$

Let now $\boldsymbol{a}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$ and $\boldsymbol{a}_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$. Then $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and the inverse is $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$. Then

$$
\begin{aligned}
G(u)= & \log \left(\operatorname{det}\left(A U A^{-1}\right)\right)+u_{1}\left(\boldsymbol{a}_{1}^{\top}\left(A^{-1}\right)^{\top} U^{-1} A^{-1} \boldsymbol{a}_{1}-1\right) \\
& +u_{2}\left(\boldsymbol{a}_{2}^{\top}\left(A^{-1}\right)^{\top} U^{-1} A^{-1} \boldsymbol{a}_{2}-1\right) \\
= & \log \left(u_{1} u_{2}\right)+u_{1}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
u_{1}^{-1} & 0 \\
0 & u_{2}^{-1}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]-1\right) \\
& \quad+u_{2}\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
u_{1}^{-1} & 0 \\
0 & u_{2}^{-1}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
1
\end{array}\right]-1\right) \\
= & \log \left(u_{1} u_{2}\right)-u_{1}-u_{2}+2
\end{aligned}
$$

and

$$
\nabla G(u)=0 \Leftrightarrow\left\{\begin{array}{l}
\frac{1}{u_{1}}-1=0 \\
\frac{1}{u_{2}}-1=0
\end{array} \quad \Leftrightarrow u_{1}=u_{2}=1\right.
$$

Thus,

$$
X=\left(A^{-1}\right)^{\top} U^{-1} A^{-1}=\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right] \text { and } V=C_{2} \sqrt{\operatorname{det}\left(X^{-1}\right)}=\pi
$$

6. The smallest distance between the sets is obtained on the boundary of the sets U_{0} and U_{1}. Thus we set $x_{2}=\mathrm{e} x_{1}$ and solve the following problem

$$
\min _{y \in U_{1}}\left\|\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right\|^{2}=\min _{y \in U_{1}}\left(x_{1}-y_{1}\right)^{2}+\left(\mathrm{e}^{-x_{1}}-y_{2}\right)^{2}
$$

The Lagrangian functional is

$$
L(x, \lambda)=\left(x_{1}-y_{1}\right)^{2}+\left(\mathrm{e}^{-x_{1}}-y_{2}\right)^{2}+\lambda\left(1+\mathrm{e}^{y_{1}}+y_{2}\right) .
$$

Hence

$$
\nabla_{x} L(x, \lambda)=0 \Leftrightarrow\left\{\begin{array}{l}
2\left(x_{1}-y_{1}\right)-2 \lambda \mathrm{e}^{-x_{1}}\left(\mathrm{e}^{-x_{1}}-y_{2}\right)=0 \\
-2\left(x_{1}-y_{1}\right)+\lambda \mathrm{e}^{y_{1}}=0 \\
-2\left(\mathrm{e}^{-x_{1}}-y_{2}\right)+\lambda=0
\end{array}\right.
$$

We set $\lambda^{0}=1$ and solve $\nabla_{x} L(x, 1)=0$. That is, $x_{1}^{0}=0.2039, y_{2}=-0.2039, y_{2}=0.3156$ and

$$
\lambda^{1}=\max \left\{1+\rho\left(1+\mathrm{e}^{y_{1}}+y_{2}\right), 0\right\}=^{\rho=1}=3.1311 .
$$

Now $\nabla_{x} L\left(x, \lambda^{1}\right)=0 \Leftrightarrow x_{1}^{1}=0.4829, y_{1}^{1}=-0.4829, y_{2}^{1}=-0.9486$. The following steps are:

- $\lambda^{2}=3.7995, x_{1}^{2}=0.5487, y_{1}^{2}=-0.5487, y_{2}^{2}=-1.3221$
- $\lambda^{3}=4.0551, x_{1}^{3}=0.5721, y_{1}^{3}=-0.5721, y_{2}^{3}=-1.4632$
- $\lambda^{4}=4.1562, x_{1}^{4}=0.5811, y_{1}^{4}=-0.5811, y_{2}^{4}=-1.5188$
- ...

The minimum point is attained at $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(0.5871,0.5560,-0.5871,-1.5560)$ and the minimum distance is 2.4164 .

