
Introduction to Optimization

Fall 2015, Homework 1
1. The gradient and Hessian matrix are, respectively,
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Now,

∇f(x)>y = −1

2
x
−1/2
1 x

1/2
2 y1 −

1

2
x

1/2
1 x
−1/2
2 y2, (0.1)

y>Hf (x)y =
1

4

(
x
−3/2
1 x

1/2
2 y21 − 2x

−1/2
1 x

−1/2
2 y1y2 + x

1/2
1 x
−3/2
2 y22

)
(0.2)

=
1

4
x

1/2
1 x

1/2
2

(
y1
x1
− y2

x2

)2

From (0.2), one sees that the Hessian matrix is positive semi-definite, and therefore f is convex. However, f
is not strictly convex, since (0.2) equals 0 for y1

x1
= y2

x2
.

2. For the Newton method we need the first and second derivatives:
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Now

x0 = 1 (this was given),
x1 ≈ 0.6350,

x2 ≈ 0.4183,

...
x44 ≈ 2.488 ∗ 10−8.

For x44, the gradient equals 0.
For the fixed point iteration, we obtain

x0 = 1,

x1 ≈ −11.5327,
x2 ≈ 0.0793,

x3 ≈ −0.0007,
x4 ≈ 6.2415 ∗ 10−10,
x5 ≈ 0.0000.

For x5, g(x5) = 0.
The fixed point iteration is now much faster. For the fixed point we need five iterations but for the Newton
we need 44 iterations. The reason that the Newton method is slow, is that the minimum point is the same
where the f ′′(x) = 0 (that is the denominator in the method). Thus more we approach the minimum, more
singular is the next iteration. The fixed point iterations converges if |g′(x)| < 1 whenever x is near the
minimum xopt = 0. This really holds in the interval (−0.46, 0.46).


