Introduction to Optimization

Final exam 22.10.2015

1. The gradient and the Hessian matrix for $f(x)=e^{-x_{1}-x_{2}}+x_{1}^{2}+x_{2}^{2}$ are

$$
\nabla f(x)=\left[\begin{array}{c}
2 x_{1}-e^{-x_{1}-x_{2}} \\
2 x_{2}-e^{-x_{1}-x_{2}}
\end{array}\right] \text { and } H_{f}=\left[\begin{array}{cc}
2+e^{-x_{1}-x_{2}} & e^{-x_{1}-x_{2}} \\
e^{-x_{1}-x_{2}} & 2+e^{-x_{1}-x_{2}}
\end{array}\right]
$$

The Hessian matrix is positive definite for every $x \in \mathbb{R}^{2}$, and therefore f is strictly convex. The Newton iterations are:

$$
x^{(k+1)}=x^{(k)}-\left[H_{f}\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right) .
$$

The starting point is $x^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Next iteration is

$$
x^{(1)}=\left[\begin{array}{l}
1 / 4 \\
1 / 4
\end{array}\right] \quad\left(\text { and } \nabla f\left(x^{(1)}\right) \approx\left[\begin{array}{l}
-0,1065 \\
-0,1065
\end{array}\right]\right)
$$

Moreover,

$$
x^{(2)}=\left[\begin{array}{l}
0,2832 \\
0,2832
\end{array}\right] \quad\left(\text { and } \nabla f\left(x^{(2)}\right) \approx\left[\begin{array}{l}
-0,0013 \\
-0,0013
\end{array}\right]\right) .
$$

2. The function is quadratic since

$$
f(x)=\frac{1}{2} \boldsymbol{x}^{\top} A \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}, \text { where } A=\left[\begin{array}{cc}
8 & -2 \\
-2 & 4
\end{array}\right] \text { and } \boldsymbol{b}^{\top}=\left[\begin{array}{ll}
-2 & -3
\end{array}\right] .
$$

Starting the conjugate gradient method from the initial point $x^{(0)}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$, we obtain $r^{(0)}=d_{0}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$, $\beta_{0}=0, \alpha_{0}=13 / 44$ and

$$
x^{(1)}=\frac{13}{44}\left[\begin{array}{l}
-2 \\
-3
\end{array}\right] \text { and } r^{(1)}=\frac{7}{22}\left[\begin{array}{c}
3 \\
-2
\end{array}\right] .
$$

Next, $\beta_{1}=\frac{7^{2}}{22^{2}}, d_{1}=\frac{7 \cdot 13}{22^{2}}\left[\begin{array}{c}4 \\ -5\end{array}\right], \alpha_{1}=\frac{11}{7 \cdot 13}$ and

$$
x^{(2)}=\left[\begin{array}{c}
-\frac{1}{2} \\
-1
\end{array}\right] \text { and } r^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Thus, $x^{(2)}$ is the optimal solution.
3. From the KKT-conditions we obtain

$$
\begin{array}{r}
\mathrm{e}^{x_{1}-x_{2}}+u_{1} \mathrm{e}^{x_{1}}-u_{2}=0 \\
-\mathrm{e}^{x_{1}-x_{2}}+u_{1} \mathrm{e}^{x_{2}}=0 \\
u_{1}\left(\mathrm{e}^{x_{1}}+\mathrm{e}^{x_{2}}-20\right)=0 \\
u_{2} x_{1}=0 \\
u_{1}, u_{2}
\end{array}
$$

The conditions are satisfied when $u_{1} \neq 0$ and $u_{2} \neq 0$ (all other possibilities lead to contradiction). Since $u_{2} \neq 0$, we must have $x_{1}=0$ and $\mathrm{e}^{x_{1}}+\mathrm{e}^{x_{2}}-20=0$. Thus, $\mathrm{e}^{x_{2}}=19$ and therefore $x_{2}=\ln 19$. Moreover, $u_{1}=\frac{1}{361}$ and $u_{2}=\frac{20}{361}$.
4. The Lagrangian is

$$
L(x, u)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-x_{1}-x_{2}+u_{1}\left(x_{1}-1\right)+u_{2}\left(-x_{1}-1\right)+u_{3}\left(x_{2}-1\right)+u_{4}\left(-x_{2}-1\right) .
$$

The gradient is

$$
\nabla L(x, u)=\left[\begin{array}{l}
2 x_{1}+x_{2}-1+u_{1}-u_{2} \\
x_{1}+2 x_{2}-1+u_{3}-u_{4}
\end{array}\right]
$$

and setting the gradient to zero and solving x_{1} and x_{2} with respect to u 's, one obtain

$$
x_{1}=\frac{1}{3}\left(1-2 u_{1}+2 u_{2}+u_{3}-u_{4}\right) \text { and } x_{2}=\frac{1}{3}\left(1+u_{1}-u_{2}-2 u_{3}+2 u_{4}\right) .
$$

Substituting these to the Lagrangian we obtain the dual function

$$
\begin{aligned}
G(u) & =-(1 / 3) u_{3}^{2}+(2 / 3) u_{3} u_{4}+(1 / 3) u_{3} u_{1}-(1 / 3) u_{3} u_{2}-(1 / 3) u_{4}^{2}-(1 / 3) u_{4} u_{1}+(1 / 3) u_{4} u_{2} \\
& -(1 / 3) u_{1}^{2}+(2 / 3) u_{1} u_{2}-(1 / 3) u_{2}^{2}-1 / 3-(2 / 3) u_{3}-(2 / 3) u_{1}-(4 / 3) u_{4}-(4 / 3) u_{2} .
\end{aligned}
$$

The roots of the gradient of the dual function do not exist, and therefore the global solution $x_{o p t}=\left[\frac{1}{3}, \frac{1}{3}\right]^{\top}$ is the solution.

