Machine Vision, exam 18.05.2017

(f) Diffuse reflection

You may write your answers in Finnish or English.

- 1. Briefly explain the following terms

 (6 p)

 (a) HSV color space
 (b) Radial distortion
 (c) The aperture problem
 (d) Unsupervised learning
 (e) Feature descriptor
- 2. Describe the main principles of the following and give one example of their usage:
 - (a) The epipolar constraint.
 (b) Random sample consensus (RANSAC).
 (c) Optical flow.
 (d) Hough transform.
 (2 p)
 (2 p)
 (2 p)

3. Texture

- (a) Explain the basic principle of the LBP operator. Describe a method for automatic texture recognition based on LBP features. (2 p)
- (b) Texture recognition is one texture related task. Name and describe briefly two other texture related tasks in computer vision. (2 p)

4. 2D transformations

A rectangle is deformed as observed in figure 1. It is known that the coordinates of the points deform through a function of the following form:

$$x' = ax + by$$
$$y' = cx^2 + dy$$

- (a) How many degrees of freedom does the transformation have? How many point correspondences are needed to estimate the parameters? (1 p)
- (b) Derive the equations to estimate the transformation parameters from a set of point correspondences. **Hint:** the transformation can be estimated linearly through a system of the form Ax = b. (2 p)

(c) Some points have been measured before and after the transformation, p and p' respectively.

$$\mathbf{p} = \begin{bmatrix} 0 & 2.00 & 4.00 & 6.00 & 8.00 & 10.00 & 10.00 & 8.00 & 6.00 & 4.00 & 2.00 & 0 \\ 1 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2 \end{bmatrix}$$

$$\mathbf{p}' = \begin{bmatrix} 2 & 4.00 & 6.00 & 8.00 & 10.00 & 12.00 & 14.00 & 12.00 & 10.00 & 8.00 & 6.00 & 4 \\ 1 & 1.04 & 1.16 & 1.36 & 1.64 & 2.00 & 3.00 & 2.64 & 2.36 & 2.16 & 2.04 & 2 \end{bmatrix}$$

Recover the parameters a, b, c, d, while assuming that there is no noise in the measurements. How would your solution be different if there was noise? (3 p)

Figure 1: Left: rectangle before deformation. Right: rectangle after deformation.