

Dept. of Computer Science and Engineering Operating Systems (521453A) Examination 27.06.2015

- 1. Explain (6p)
 - a) Critical section problem
 - b) Round-Robin scheduling
 - c) Fragmentation
- 2. Processes P1-P5 are running in a system and the processes have allocated resources A, B, and C according to the table. The table also shows the maximum amount of resources each process requires and the amount of available resources currently in the system.
 - a) Explain what is a safe state. (1p)
 - b) Use the banker's algorithm to determine if the system is in a safe state. (4p)
 - c) What are the downsides of the banker's algorithm? (1p)

Process	Allocation A B C	Max A B C	
P1	0 1 0	7 5 3	3 3 2
P2	$2\ 0\ 0$	$3\ 2\ 2$	
P3	$3\ 0\ 2$	902	
P4	2 1 1	$2\ 2\ 2$	
P5	$0\ 0\ 2$	$4\ 3\ 3$	

- 3. a) Explain the term demand paging. Under what circumstances do page faults occur? (2p)
 - b) A computer memory management is implemented by demand paging using LRU pagereplacement algorithm. A process will access its memory space according to the following reference string:

The process can use three frames. Show the content of the frames after each reference. How many page faults will occur? (3p)

- c) Is FIFO in this situation an optimal demand paging algorithm? Justify your answer. (1p)
- 4. a) Below there is a diagram of process' states and transitions between them. Name the entries 1.-11. (5p)

b) What is device queue? (1p)

