1. (a) For the circuits in figures 1 b), c) and d) sketch the output for the input shown in figure 1 a). (4 p)
(b) What is the output of the circuit shown in figure 1 e) if the input is $u_{i}=10 \sin (2 \pi f t) \mathrm{mV}$? (2 p)

Assume that each diode has a 0.7 V drop when conducting.
2. The MOSFET in the circuit of figure 2 has $\mu_{n} C_{o x}=25 \mathrm{uA} / \mathrm{V}^{2}, \lambda=0, W / L=$ 100 and $U_{t}=2 \mathrm{~V}$. Capacitors C_{1}, C_{2} and C_{3} are large coupling capacitors.
(a) Find the values of I_{D} and g_{m} at the bias point. (2p)
(b) Draw a small-signal equivalent circuit for the circuit. (1p)
(c) Find the input and output resistances. (1p)
(d) Find the gain $u_{L} / u_{s r c}$. 2 p)

$$
\begin{aligned}
i_{D} & =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(u_{G S}-U_{t}\right)^{2}\left(1+\lambda \cdot u_{D S}\right) \\
g_{m} & =\left.\frac{\partial i_{D}}{\partial u_{G S}}\right|_{u_{G S}}=U_{G S}=\mu_{n} C_{o x} \frac{W}{L}\left(U_{G S}-U_{t}\right)
\end{aligned}
$$

3. (a) Calculate the input impedance and voltage gain for the circuit presented in Fig. 3 a), $\beta=100$. (3p)
(b) Calculate the output voltage of the circuit presented in Fig. 3 b), as the $R_{2}=R_{4}=10 \mathrm{k} \Omega, R_{1}=R_{3}=2,5 \mathrm{k} \Omega, u_{1}=1 \mathrm{~V}$ and $u_{2}=2 \mathrm{~V}(1 \mathrm{p})$
(c) Design an inverting amplifier, which has very large input impedance and gain of -10 using operational amplifiers and resistors. (2p)
4. (a) Draw the schematic diagram of a CMOS inverter and the $V_{I N}-V_{\text {OUT }}$ curve of the circuit. (2p)
(b) What is the advantage of a CMOS switch compared to a switch using one MOS transistor? (1p)
(c) What is the principle for calculating the dimensions of the transistors in the general structure CMOS logic gate presented in Fig. 4? (1p)
(d) What is the purpose of the S / H circuit in A/D converters? (2p)
$+1.4$
-1.4

Figure 1: Figure for question 1.

Figure 2: Figure for question 2.

a)

b)

Figure 3: Figures for question 3.

Figure 4: Figure for question 4.

