University of Oulu
Department of Electrical and Information Engineering, Electronics Laboratory
Principles of Electronics Design 521431A
Exam 12/18/2007

1. Following questions are related to Fig. 1 and you can assume that $U_{B E}=0,6 \mathrm{~V}$.
(a) Find the gain of the operational amplifier configuration $u_{\text {opa }} / u_{i n}$ and the input impedance.
(b) Find the gain of the emitter follower $u_{o u t} / u_{o p a}$ and the output impedance.
(c) What is the total gain of the configuration $u_{\text {out }} / u_{\text {in }}$?
(d) The input signal $u_{i n}$ is a sine-wave with amplitude of 10 mV , draw signals $u_{o p a}$ and $u_{o u t}$ in the same figure.
(e) How many decibels the output signal attenuates if $8 \Omega \mathrm{load}$ is connected to the output?

Figure 1: Figure for question 1.
2. Select component values for common source amplifier of Fig. 2 to meet the following specifications: $R_{\text {out }}=1 \mathrm{k} \Omega, R_{\text {in }}>100 \mathrm{k} \Omega, U_{D}=4 \mathrm{~V}, u_{\text {out }} / u_{\text {in }}>10$. Transistor parameters: $K_{n}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}=2 \mathrm{~mA} / \mathrm{V}^{2}$ and $U_{t}=1 \mathrm{~V}$. Capacitors C_{1}, C_{2} and C_{3} are large coupling capacitors. (6p)

Figure 2: Figure for question 2.

$$
\begin{aligned}
i_{D} & =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(u_{G S}-U_{t}\right)^{2} \\
g_{m} & =\left.\frac{\partial i_{D}}{\partial u_{G S}}\right|_{u_{G S}=U_{G S}}=\mu_{n} C_{o x} \frac{W}{L}\left(U_{G S}-U_{t}\right)
\end{aligned}
$$

3. (a) Define the operation of a diode, biased both in forward- and reverse directions (voltage/current, temperature effect) either drawing the curve or using a formula and also using words. (2p)
(b) Present the ideal model of a diode and define, what means and how you would calculate the value of the dynamic resistance of a diode. (2p)
(c) How would you make a half-bridge rectifier using a diode? Draw the schematic diagram and explain its operation. (2p)
4. (a) Draw the schematic diagram and the transfer function of a CMOS inverter (using a curve $V_{I N}-V_{O U T}$) and explain the operation state of the transistors in the different parts of the curve. (2p)
(b) On which basis and how would you calculate the sizes of the transistors of the CMOS inverter? (2p)
(c) The schematic diagram of a double integral A/D-converter is presented in Figure 3. Define using words, how it works and draw the voltages in points $-V_{S}, V_{\text {ref }}$ and V_{x} as a function of time. (2p)

Figure 3: Figure for question 4.

