Principles of Electronics Design 521431A

Exam 12/18/2007

- 1. Following questions are related to Fig. 1 and you can assume that $U_{BE} = 0.6 \text{ V}$.
 - (a) Find the gain of the operational amplifier configuration u_{opa}/u_{in} and the input impedance.
 - (b) Find the gain of the emitter follower u_{out}/u_{opa} and the output impedance.
 - (c) What is the total gain of the configuration u_{out}/u_{in} ?
 - (d) The input signal u_{in} is a sine-wave with amplitude of 10 mV, draw signals u_{opa} and u_{out} in the same figure.
 - (e) How many decibels the output signal attenuates if 8Ω load is connected to the output?

Figure 1: Figure for question 1.

2. Select component values for common source amplifier of Fig. 2 to meet the following specifications: $R_{out} = 1 \,\mathrm{k}\Omega$, $R_{in} > 100 \,\mathrm{k}\Omega$, $U_D = 4 \,\mathrm{V}$, $u_{out}/u_{in} > 10$. Transistor parameters: $K_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} = 2 \,\mathrm{mA/V^2}$ and $U_t = 1 \,\mathrm{V}$. Capacitors C_1 , C_2 and C_3 are large coupling capacitors. (6p)

Figure 2: Figure for question 2.

$$i_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (u_{GS} - U_t)^2$$

$$g_m = \frac{\partial i_D}{\partial u_{GS}}|_{u_{GS} = U_{GS}} = \mu_n C_{ox} \frac{W}{L} (U_{GS} - U_t)$$

- 3. (a) Define the operation of a diode, biased both in forward- and reverse directions (voltage/current, temperature effect) either drawing the curve or using a formula and also using words. (2p)
 - (b) Present the ideal model of a diode and define, what means and how you would calculate the value of the dynamic resistance of a diode. (2p)
 - (c) How would you make a half-bridge rectifier using a diode? Draw the schematic diagram and explain its operation. (2p)
- 4. (a) Draw the schematic diagram and the transfer function of a CMOS inverter (using a curve V_{IN} - V_{OUT}) and explain the operation state of the transistors in the different parts of the curve. (2p)
 - (b) On which basis and how would you calculate the sizes of the transistors of the CMOS inverter? (2p)
 - (c) The schematic diagram of a double integral A/D-converter is presented in Figure 3. Define using words, how it works and draw the voltages in points $-V_S$, V_{ref} and V_x as a function of time. (2p)

Figure 3: Figure for question 4.