Artificial Intelligence (521495A), Spring 2022 Exercise 2 : Probability and Bayesian networks Deadline for reports: Wed 2.2.2022 23:59 (+1h)

This handout contains five problems related to probability and Bayesian networks lectures. Problems 1-4 are pre-exercises to support learning and solutions to them are provided in **solutions2.pdf**. For Problem 5, the solution is not given and you should return a solution as a report. **Include in the report only the solution to Problem 5**. The solution gives max. 1 point, which is taken into account in course grading.

Problems 1-5: Background material is provided in Lectures 3 and 5 (Track 2). See also the course book Chapters 13 and 14.

Problem 1. Let's have a joint probability table of variables "well-prepared" (W, +w: yes, -w: no) and "passing the exam" (E, +e: yes, -e: no), when studying students' success in the course.

W	E	P(W,E)
+w	+e	0.45
+w	-е	0.10
-W	+e	0.05
-W	-е	0.40

Calculate the following conditional probabilities

- (a) P(+w | +e)
- (b) P(-w | +e)
- (c) $P(+e \mid -w)$
- (d) $P(W \mid +e)$ using normalization trick

Problem 2. A patient takes a cancer test and the result is positive. The test returns a correct positive 97% of the cases and correct negative 95% of the cases. Furthermore 0.004 of the population have the cancer.

Does the patient have cancer or not? Use Bayes rule to find out.

Problem 3. Consider the Bayesian network below. Assuming that P(+a, +b, +c, +d) = 1/24 and P(-a, -b, -c, -d) = 1/36.

Calculate the following probabilities

(a) P(+a)

(b) P(+b | +a)

Problem 4. Consider a Bayesian network for medical diagnosis where having heart problems (H, +h: yes, -h: no) depends on blood pressure (B, +b: high, -b: low). Furthermore, blood pressure depends on doing exercises (E, +e: yes, -e: no) and having healthy diet (D, +d: yes, -d: no). The probability tables are given below.

(a) Construct a Bayesian network for given problem

(b) Formulate the equation for joint probability distiribution P(E, D, B, H) using the network structure (i.e., the conditional independencies)

E	P(E)		D	P(D)				
+e	0.5		+d	0.75				
-е	0.5		-d	0.25				
E	D	B	$P(B \mid E, D)$					
+e	+d	+b	0.05					
+e	+d	-b	0.95		В		Η	$P(H \mid B)$
+e	-d	+b	0.55		+ł)	+h	0.75
+e	-d	-b	0.45		+ł	5	-h	0.25
-е	+d	+b	0.45		-t)	+h	0.05
-е	+d	-b	0.55		-t)	-h	0.95
-е	-d	+b	().90				
-e	-d	-b	(0.10				

(c) Calculate the probability of P(+e, -d, +b, +h)

Problem 5* [1p]. Consider a Bayesian network for avalanche risk analysis where the occurence of avalanche (A, +a: yes, -a: no) depends on the steepness of the mountain area (S, +s: steep, -s: gently) and the snow conditions (C, +c: unstable, -c: stable). Furthermore, snow conditions depends on the recent weather (W, +w: unfavourable, -w: favourable), where unfavourable weather increases the unstability of snow conditions. The marginal and conditional probability tables are given below.

(a) Construct a Bayesian network for a given problem

(b) Calculate $P(A \mid +s)$, i.e., the probability distribution of avalanche occurence when skiing on a steep mountain area. Use variable elimination to perform the inference

S	P(S)		W	P(W)			
+s	0.3		+w	0.6			
-S	0.7		-W	0.4			
				<u> </u>			
S	C	A	P(A)	S,C)			
+s	+c	+a	0.80				
+s	+c	-a	0.20		W	C	$P(C \mid W)$
+s	-c	+a	0.30		+w	+c	0.8
+s	-c	-a	0.70		+w	-c	0.2
-S	+c	+a	0.20		-W	+c	0.4
-S	+c	-a	0.80		-W	-c	0.6
-S	-c	+a	0.01				·
-S	-c	-a	0.99				