
Artificial Intelligence (521495A), Spring 2022 

Exercise 1: Answers to Problems 1-5 
 

Problem 1. State-space search problem definition 

(a) State can be represented by a pair (x, y), where x and y are the amounts of water in pot A and pot B, 

respectively.  

The initial state is (x, y) = (0, 0).  

The goal test is: (x = 2) OR (y = 2). In this case, the other pot may contain some water.  

If it is wanted, that it is empty, the goal test could be for example ((x = 2) OR (y = 2)) AND (x+y = 2). 

Six actions can be recognized: 

 

The column "Transition" specifies the successor function and the column "Applicable, if" provides a 

condition for state, that must be fulfilled. Different kinds of costs can be defined for the actions can be 

given. The stated requirement was to minimize the waste of water, so the Cost 1 seems to be the right one. 

It could also be Cost 2.  

Note how you can use variables to specify the actions. In the specification of transitions, the current state is 

referred to with pair (X,Y) and the next states are specified using those variables. State space conditions and 

associated costs refer to the variables of introduced in transition descriptions. 

  



(b) Search tree 

 

 

(c) There are loops in the state space. Therefore, the depth-first strategy would not work with the tree-

search algorithm. In general, the tree-search would do unnecessary node expansions (note what happens 

with the nodes labelled (4,3) and (0,3) in the search tree). Counterweight for the need for expanding is that 

the tree-search does not have to maintain the closed set. 

 

  



Problem 2. Graph-search algorithm applied 

 

 

a) Depth-first search. 

States expanded: Start, A, C, D, B, Goal 

Path returned: Start-A-C-D-Goal 

b) Breadth-first search. 

States expanded: Start, A, B, D, C, Goal 

Path returned: Start-D-Goal 

c)Uniform cost search. 

States expanded: Start, A, B, D, C, Goal 

Path returned: Start-A-C-Goal 

d) Greedy search with the heuristics shown on the graph. 

States expanded: Start, D, Goal 

Path returned: Start-D-Goal 

e) A* search with the same heuristic. 

States expanded: Start, A, D, C, Goal 

Path returned: Start-A-C-Goal 

  



Problem 3. Tree-search algorithm applied 

 
Note that the goal test is applied to the node, when it is removed from there.  
 
Detailed explanations of processing: 
 
a) Depth-first: (LIFO queue)  
Tree-search algorithm expands like this: Start-A-C-D-B-Start-A….  
So, it runs into loop and will not manage to find the solution.  
 
b) Breadth-first: FIFO queue used 
1. Into the queue: Start  
2. Remove "Start". Into the queue: Start-A, Start-B, Start-D  
3. Remove "Start-A". Into the queue: Start-A-C  
4. Remove "Start-B". Into the queue: Start-B-D  
5. Remove "Start-D". Into the queue: Start-D-B, Start-D-C, Start-D-Goal  
6. Remove "Start-A-C". Into the queue: Start-A-C-D, Start-A-C-Goal  
7. Remove "Start-B-D". Into the queue: Start-B-D-Start, Start-B-D-C, Start-B-D-C-Goal  
8. Remove "Start-D-B". Into the queue: Start-D-B-Start  
9. Remove "Start-D-C". Into the queue: Start-D-C-A, Start-D-C-Goal  
10. Remove "Start-D-Goal". Terminate, goal reached.  
Found path: Start-D-Goal  
 
c) Uniform-cost search (priority queue based on cost) 
1. Into the queue: Start (cost = 0)  
2. Remove "Start" (0). Into the queue: Start-A (cost = 2), Start-B (cost = 3), Start-D (cost = 4)  
3. Remove "Start-A" (2). Into the queue: Start-A-C (cost = 6)  
4. Remove "Start-B" (3). Into the queue: Start-B-D (cost = 7)  
5. Remove "Start-D" (4). Into the queue: Start-D-C (cost = 6), Start-D-B (cost = 9), Start-D-Goal (cost = 10)  
6. Remove "Start-A-C" (6). Into the queue: Start-A-C-D (cost = 7), Start-A-C-Goal (cost = 8)  
7. Remove "Start-D-C" (6). Into the queue: Start-D-C-Goal (cost = 8), Start-D-C-A (cost = 10)  
8. Remove "Start-B-D" (7). Into the queue: Start-B-D-C (cost = 8), Start-B-D-Goal (cost = 12)  
9. Remove "Start-A-C-D" (7). Into the queue: Start-A-C-D-B (cost = 11), Start-A-C-D-Start (cost = 12),  
   Start-A-C-D-Goal (cost = 12)  
10. Remove "Start-A-C-Goal" (8). Terminate, goal reached.  
Found path: Start-A-C-Goal (optimal path)  
 
d) Greedy search: (priority queue based on heuristic) Assuming heuristic h = 10 for Start. 
1. Into the queue: Start (h = 10)  
2. Remove "Start". Into the queue: Start-D (h = 1), Start-A (h = 2), Start-B (h = 5)  
3. Remove "Start-D". Into the queue: Start-D-Goal (h = 0), Start-D-C (h = 2), Start-D-B (h = 5)  
4. Remove "Start-D-Goal". Terminate, goal reached.  
Found path: Start-D-Goal (note: not optimal)  



e) A* search: (priority queue based on cost+heuristic) 
 
1. Into the queue: Start (cost+h = 10)  
2. Remove "Start". Into the queue: Start-A (cost+h = 4), Start-D (cost+h = 6), Start-B (cost+h = 8)  
3. Remove "Start-A" (4). Into the queue: Start-A-C (cost+h = 8)  
4. Remove "Start-D" (6). Into the queue: Start-D-C (cost+h = 8), Start-D-Goal (cost+h = 10),  
   Start-D-B (cost+h = 14)  
5. Remove "Start-B" (8). Into the queue: Start-B-D (cost+h = 8)  
6. Remove "Start-A-C" (8). Start-A-C-D (cost+h = 8), Start-A-C-Goal (cost+h = 8)  
7. Remove "Start-D-C" (8). Into the queue: Start-D-C-Goal (cost = 8), Start-D-C-A (cost+h = 12)  
8. Remove "Start-B-D" (8). Into the queue: Start-B-D-C (cost+h = 10), Start-B-D-Goal (cost+h = 12)  
9. Remove "Start-A-C-D" (7). Into the queue: Start-A-C-D-Goal (cost = 12), Start-A-C-D-B (cost = 16)  
   Start-A-C-D-Start (cost = 22)  
10. Remove "Start-A-C-Goal" (8). Terminate, goal reached.  

Found path: Start-A-C-Goal (an optimal path)   



 
 
Problem 4. "Breakout Method" paper by Morris 

The paper considers a method for solving constraint satisfaction problems (CSPs)1 using local search. 

Specifically, one starts from a configuration (state)2 where some constraints are violated. Then, one looks at 

the nearby configurations obtained by local changes and selects a configuration, which reduces the number 

of constraint violations. So, the basic technique is doing hill-climbing search and it may get stuck to some 

local minimum (= situation, where some constraints are still violated, but there is no better nearby 

configuration). 

Author's concern is how to solve the local minimum problem. He takes intuition from "a physical force 

metaphor". The idea is that local minimum can be thought as an equilibrium state between objects 

(variables) surrounded by a potential barrier (local changes lead to worse solutions). One must break 

through the barrier in order to reach an equilibrium state with a lower energy. 

This is done as follows (algorithm is provided in Figure 2): 

1. Cost function to be minimized (to zero) is defined as the sum C = ∑ 𝑤𝑖𝑁𝑖𝑖∈𝑽 , where V denotes the set of 

variables, 𝑤𝑖  is a weight associated with the variable i, and 𝑁𝑖  is the "nogood" value: 

𝑁𝑖 = {
0 if all constraints are satisfied for the variable 𝑖
1 otherwise                                                                      

 

Note that at the global minimum C = 0. 

2. Initially, the weight of each variable is equal to one.  

3. When the search reaches a local minimum, the weights of nogoods are increased by unit increments 

until the state is not a local minimum anymore. So, the idea is to modify the cost function in this manner in 

order to make breakout.  

Author provides experimental results for different kinds of CSPs. The algorithm has intuitive grounds and to 

provide more support to the proposed method,  he compares it to a closely related "Fill" algorithm, which 

is shown to be complete (that is, quaranteed to find a solution). 

  

 
1 CSPs are discussed in Lecture 6. 
2 A state is a complete set of assignments for the variables. 



Problem 5. State-space search for 6 tiles 

(a) 5 tiles and empty position can be placed in 6! times, which is equal to 720. However, only half of those 

states is reachable from the initial state, so the size of the state space is 360. For example,  

(b) One possibility is to specify actions as pairs (L, D), where L specifies the location of the tile to be moved 

and D specifies the sliding direction. Tile locations can be labelled as  

 

 

and sliding directions are  

    

 

 

 

 

In the table below, all 14 actions are listed in the first column. Sliding direction is shown with its initial 
letter. 
 
(c) Precondition for an action is that some tile location is empty. Conditions are shown in the second 
column of the table. 
 
(d) Current state can be encoded as a vector (a, b, c, d, e, f), where components make a permutation of 
values (0, 1, 2, 3, 4, 5), 0 indicating an empty tile position. Vectors for the next state can then be expressed 
as shown in the third column of the table. 
 
(e) Last column in the table. 
 

 

(f) A good heuristic should estimate the cost of the action sequence as closely as possible. Also it should not 
overestimate the cost.  



 
In the lectures, two heuristics for 8-puzzle were discussed. Russell & Norvig's experimental results showed 
that heuristic h2 based on Manhattan distance is better than h1 (number of misplaced tiles). 
 
Similarly, one could use a distance-based heuristic, which also considers the action costs. The heuristic is 

ℎ(𝑆𝑇𝐴𝑇𝐸) = ∑ 𝐷(

𝑇𝐼𝐿𝐸∈{1,2,3,4,5}

𝑇𝐼𝐿𝐸) 

where D(TILE) is the minimum sliding cost for TILE. Specifically, if there are two minimum step routes 
between two positions, the value of D(TILE) is the cost of the route, which minimizes the cost. Then the 
cost is not overestimated.  
 
For example, consider moving tile "2" from the position D to the target C. The cost to be used in the 
heuristic function is 3. Also, if the initial position of "2" is A, the heuristic is based on the cost of the longer 
route, whose cost is 4. 
 

                                           
 


